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Preface

The 2nd Workshop on Approximation and Online Algorithms (WAOA 2004)
focused on the design and analysis of algorithms for online and computationally
hard problems. Both kinds of problems have a large number of applications
arising from a variety of fields. WAOA 2004 took place in Bergen, Norway, from
September 14 to September 16, 2004. The workshop was part of the ALGO 2004
event which also hosted ESA, WABI, IWPEC, and ATMOS.

Topics of interests for WAOA 2004 were: applications to game theory, approx-
imation classes, coloring and partitioning, competitive analysis, computational
finance, cuts and connectivity, geometric problems, inapproximability results,
mechanism design, network design, routing, packing and covering, paradigms,
randomization techniques, and scheduling problems. In response to our call we
received 47 submissions. Each submission was reviewed by at least 3 referees,
who judged the paper on originality, quality, and consistency with the topics
of the conference. Based on the reviews, the Program Committee selected 21
papers. This volume contains the 21 selected papers and the two invited talks
given by Yossi Azar and Klaus Jansen.

We thank all the authors who submitted papers to the workshop and we also
kindly thank the local organizers of ALGO 2004.

November 2004 G. Persiano
R. Solis-Oba
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Online Packet Switching

Yossi Azar1,�

School of Computer Science, Tel Aviv University,
Tel Aviv, 69978, Israel

azar@tau.ac.il

Abstract. We discuss packet switching for single-queue, multi-queue
buffers and CIOQ buffers. We evaluate the algorithms by competitive
analysis. We also mention the zero-one principle that applies to general
switching networks.

1 Introduction

Overview: Packet routing networks, most notably the Internet, have become
the preferred platform for carrying data of all kinds. Due to the steady increase
of network traffic, and the fact that Internet traffic volume tends to constantly
fluctuate, Quality of Service (QoS) networks, which allow prioritization between
different traffic streams have gained considerable attention within the networking
community. As network overloads become frequent, intermediate switches have
to cope with increasing amounts of traffic, while attempting to pass forward more
“valuable” packets, where values correspond to the required quality of service for
each packet. We can measure the quality of the decisions made within a network
by considering the total value of packets that were delivered to their destination.

Traditionally, the performance of queuing systems has been studied within the
stability analysis framework, either by a probabilistic model for packet injection
(queuing theory, see e.g. [11, 18]) or an adversarial model (adversarial queuing
theory, see e.g. [5, 12]). In stability analysis packets are assumed to be identical,
and the goal is to determine queue sizes such that no packet is ever dropped.
However, real-world networks do not usually conform with the above assump-
tions, and it seems inevitable to drop packets in order to maintain efficiency. As
a result, the competitive analysis framework, which avoids any assumptions on
the input sequence and compares the performance of online algorithms to the op-
timal solution, has been adopted recently for studying throughput maximization
problems.

Single-Queue: In general we assume that all packets have a fixed size and each
is associated with a value. We are given a FIFO queue with bounded capacity.
At each time step new packets arrive to the end of the queue, and the packet at
the head of the queue is transmitted. The goal is to maximize the total value of

� Research supported in part by the Israel Science Foundation.

G. Persiano and R. Solis-Oba (Eds.): WAOA 2004, LNCS 3351, pp. 1–5, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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transmitted packets. We distinguish between two models: preemptive and non-
preemptive. The former allows to discard packets stored in the queue, while the
latter does not, i.e. whenever a packet is accepted to the queue it has to be
eventually transmitted. In both cases a packet can be dropped at its arrival.

Aiello et al. [2] initiated the study of different queuing policies for the 2-value
non-preemptive model in which each packet has a value of either 1 or α > 1.
Andelman et al. [4] later showed tight bounds for this case. The preemptive 2-
value single-queue model was initially studied by Kesselman and Mansour [14],
followed by Lotker and Patt-Shamir [17] who showed almost tight bounds. The
general preemptive single-queue model, where packets can take arbitrary values,
was investigated by Kesselman et al. [13], who proved that the natural greedy
algorithm is 2-competitive (specifically 2α/(1 + α)-competitive where α ≥ 1 is
the ratio between the largest value to the smallest one).

The natural greedy preemptive admission control strategy for a single queue
studied in [13] is defined as follows: Enqueue a new packet if the queue is not
full, or a packet with the smallest value in the queue has a lower value than the
new packet. In the latter case a smallest value packet is discarded.

Kesselman et al. [15] were the first to show a preemptive algorithm whose
competitiveness is strictly below 2, followed by Bansal et al. [10] who presented
a 1.75-competitive algorithm.

Multi-Queue: The multi-queue QoS switching model that was originally in-
troduced in [7]. In this model we have a switch with m incoming FIFO queues
with bounded capacities and one output port. At each time step new packets
arrive to each of the queues. Additionally, at each time step the switch selects
one non-empty queue and transmits the packet at the head of the queue through
the output port. As before, the goal is to maximize the total value of transmitted
packets.

The results for a single queue were generalized for multi-queue switches with
arbitrary number of input queues in [7], by a general reduction from the multi-
queue model to the single-queue model. Specifically, a 4-competitive algorithm
is presented in [7] for the weighted multi-queue switch problem. An improved
3-competitive algorithm was shown in [9]. The 3-competitive algorithm is the
natural greedy which works as follows. Use the greedy single-queue policy in all
m incoming queues to handle admission control. At each time step, transmit the
packet with the largest value among all packets at the head of the queues.

The multi-queue switch model has been also investigated for the special case
of unit-value packets, which corresponds to IP networks. First, the result from
[7] shows that any algorithm that transmits any packet if exists is 2-competitive.
Albers and Schmidt [3] showed that any greedy algorithm for the unit-value prob-
lem is not better than 2-competitive. In addition, they introduced a deterministic
1.89-competitive algorithm for this problem; A randomized 1.58-competitive al-
gorithm was previously shown in [7]. Recently, a deterministic 1.58-competitive
algorithm was shown in [6], for the case where the size of the queues is quite
large compared with their number.
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CIOQ Switch: To date, the most general switching model that has been stud-
ied using competitive analysis is CIOQ (Combined Input and Output Queued)
architecture. A CIOQ switch with speedup S ≥ 1 is an N ×N switch, with N
input ports and N output ports. The internal fabric that connects the input
and output FIFO queues is S times faster than the queues. A switching policy
for a CIOQ switch consists of two components. First, an admission control pol-
icy to determine the packets stored in the bounded-capacity queues. Second, a
scheduling strategy to decide which packets are transferred from input queues
to output queues through the intermediate fabric at each time step. The goal is
to maximize the total value of packets transmitted from the switch.

The online problem of maximizing the total throughput of a CIOQ switch
was initiated by Kesselman and Rosén in [16]. For the special case of unit-value
packets, they proved that the greedy algorithm is 2-competitive for a speedup
of 1 and 3-competitive for any speedup. For the general case they obtained
non-constant bounds of 4S and log α, where α is the ratio between the largest
and smallest values. Recently, a constant (about 9) competitive algorithm was
presented in [8] for the general CIOQ model.

Multiple-Node Networks: The simplest network one may consider has a
topology of a line of length k, where node i is connected to node i + 1 by a
unidirectional link, and contains a fixed-size FIFO queue to store the packets
waiting to be transmitted. At each time step new packets may arrive online to
the network nodes, each is associated with a value and a destination node. Addi-
tionally, each node can transmit the packet at the head of its queue to the next
node. The goal is to maximize the total value of packets that were delivered to
their destination. The case k = 1 corresponds to single-queue. The unweighted
version of the line model, in which all packets have unit value, was investigated
by Aiello et al. [1] who proved that the greedy algorithm is O(k)-competitive.
This was generalized and improved by [9] that showed that the natural greedy
algorithm is (k + 1)-competitive for the weighted problem.

The Zero-One Principle: While different techniques were used to analyze al-
gorithms in various switching models, there was one common property: analysis
of 2-value sequences, in which packets can take only 2 distinct values, was al-
ways substantially easier compared with arbitrary packet sequences. Moreover,
many results are known only for restricted value sequences, since handling the
state of a system containing packets with arbitrary values is significantly more
involved. Motivated by this, [9] introduced the zero-one principle for switching
networks. This principle applies to all comparison-based switching algorithms,
that base their decisions on the relative order between packet values. The prin-
ciple says that in order to prove that an algorithm achieves c-approximation it
is sufficient to prove that it achieves c-approximation with respect to sequences
composed solely of 0’s and 1’s, where ties between packets with equal values may
be broken arbitrarily. One might have assumed that without loss of generality
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there are no 0-value packets in the input sequence since those could have been
dropped. Indeed, the optimal solution may ignore all 0-value packets, however,
the comparison-based algorithm may not, since it only regards the relative order
between values. The zero-one principle was applied, among others, to get the 3-
competitive algorithm for the multi-queue switch as well as the k+1 -competitive
algorithm for the line.
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Approximation Algorithms for Mixed Fractional
Packing and Covering Problems

Klaus Jansen

Institut für Informatik und Praktische Mathematik, Universität Kiel,
Olshausenstr. 40, 24098 Kiel, Germany

kj@informatik.uni-kiel.de�

We study general mixed fractional packing and covering problems (MPCε) of
the following form: Given a vector f : B → IRM

+ of M nonnegative continuous
convex functions and a vector g : B → IRM

+ of M nonnegative continuous concave
functions, two M - dimensional nonnegative vectors a, b, a nonempty convex
compact set B and a relative tolerance ε ∈ (0, 1), find an approximately feasible
vector x ∈ B such that f(x) ≤ (1 + ε)a and g(x) ≥ (1− ε)b or find a proof that
no vector is feasible (that satisfies x ∈ B, f(x) ≤ a and g(x) ≥ b).

The fractional packing problem with convex constraints, i.e. to find x ∈ B
such that f(x) ≤ (1 + ε)a, is solved in [4, 5, 8] by the Lagrangian decomposition
method in O(M(ε−2 + lnM)) iterations where each iteration requires a call
to an approximate block solver ABS(p, t) of the form: find x̂ ∈ B such that
pT f(x̂) ≤ (1 + t)Λ(p) where Λ(p) = minx∈B pT f(x). Furthermore, Grigoriadis
et al. [6] proposed also an approximation algorithm for the fractional covering
problem with concave constraints, i.e. to find x ∈ B such that g(x) ≥ (1 − ε)b,
within O(M(ε−2 + lnM)) iterations where each iteration requires here a call
to an approximate block solver ABS(q, t) of the form: find x̂ ∈ B such that
qT g(x̂) ≥ (1− t)Λ(q) where Λ(q) = maxx∈B qT g(x). Both algorithms solve also
the corresponding min-max and max-min optimization variants within the same
number of iterations. Furthermore, the algorithms can be generalized to the case
where the block solver has arbitrary approximation ratio [7, 8, 9].

Further interesting algorithms for the fractional packing and fractional cov-
ering problem with linear constraints were developed by Plotkin et al. [13] and
Young [15]. These algorithms have a running time that depends linearly on the
width - an unbounded function of the input instance. Several relatively compli-
cated techniques were proposed to reduce this dependence. Garg and Könemann
[3] described a nice algorithm for the fractional packing problem with linear con-
straints that needs only O(Mε−2 lnM) iterations.

� Research of the author was supported in part by EU Thematic Network APPOL,
Approximation and Online Algorithms, IST-2001-30012, by EU Project CRESCCO,
Critical Resource Sharing for Cooperation in Complex Systems, IST-2001-33135 and
by DFG Project, Entwicklung und Analyse von Approximativen Algorithmen für
Gemischte und Verallgemeinerte Packungs- und Überdeckungsprobleme, JA 612/10-
1. Part of this work was done while visiting the Department of Computer Science at
ETH Zürich.

G. Persiano and R. Solis-Oba (Eds.): WAOA 2004, LNCS 3351, pp. 6–8, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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For the mixed packing and covering problem (with linear constraints), Plotkin
et al. [13] proposed also approximation algorithms where the running time de-
pends on the width. Young [16] described an approximation algorithm for a
special mixed packing and covering problem with linear constraints and special
convex set B = IRN

+ . The algorithm has a running time of O(M2ε−2 lnM). Re-
cently, Fleischer [1] gave an approximation scheme for the optimization variant
(minimizing cT x such that Cx ≥ b, Px ≤ a and x ≥ 0 where a, b, and c are
nonnegative integer vectors and P and C are nonnegative integer matrices).

Young [16] posed the following interesting open problem: find an efficient
width-independent Lagrangian-relaxation algorithm for the mixed packing and
covering problem (with linear constraints): find x ∈ B such that Px ≤ (1 + ε)a,
Cx ≥ (1− ε)b, where P, C are nonnegative matrices, a, b are nonnegative vectors
and B is a polytope that can be queried by an optimization oracle (given a vector
c, return x ∈ B minimizing cT x) or some other suitable oracle.

New results: We found an approximation algorithm for the general mixed
problem with M convex and M concave functions fm, gm that uses an suitable
oracle of the form: find x̂ ∈ B such that pT f(x̂) ≤ ∑M

m=1 pm and qT g(x̂) ≥∑M
m=1 qm [10]. The algorithm uses O(Mε−2 ln(Mε−1)) iterations or coordination

steps, where in each iteration an oracle of the form above is called. Recently we
found an improved width-independent Lagrangian-relaxation algorithm for the
general mixed problem [11]. The algorithm uses a variant of the Lagrangian or
price directive decomposition method. This is an iterative strategy that solves
(MPCε) by computing a sequence of triples (p, q, x) as follows. A coordinator
uses the current vector x ∈ B to compute two price vectors p = p(x) ∈ IRM

+

and q = q(x) ∈ IRM
+ with

∑M
m=1 pm + qm = 1. Then the coordinator calls here a

feasibility oracle to compute a solution x̂ ∈ B of the block problem BP (p, q, t)

find x̂ ∈ B s.t. pT f(x̂)/(1 + t) ≤ qT g(x̂)(1 + t) + 2p̄− 1,

(where t = Θ(ε) and p̄ =
∑M

m=1 pm) and makes a move from x to (1− τ)x + τ x̂
with an appropriate step length τ ∈ (0, 1). Such a iteration is called a coordi-
nation step. In case p̄ is close to 1/2, we use a slightly different block problem
BP ′(p, q, t) of the form:

find x̂ ∈ B s.t. pT f(x̂)/(1 + 8t) ≤ qT g(x̂)(1 + 8t) + (2p̄− 1− t).

Our main result is the following: There is an approximation algorithm that
for any given accuracy ε ∈ (0, 1) solves the general mixed fractional packing and
covering problem (MPCε) within

N = O(M(ε−2 ln ε−1 + lnM))

iterations or coordination steps, where each of which requires a call to the block
problem BP (p, q, t) or BP ′(p, q, t).

Independently, Khandekar and Garg [2] proposed an approximation algo-
rithm for the general mixed problem that uses O(Mε−2 lnM) iterations or co-
ordination steps.
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Abstract. The edge multicoloring problem is that given a graph G and
integer demands x(e) for every edge e, assign a set of x(e) colors to edge e,
such that adjacent edges have disjoint sets of colors. In the minimum sum
edge multicoloring problem the finish time of an edge is defined to be the
highest color assigned to it. The goal is to minimize the sum of the finish
times. The main result of the paper is a polynomial time approximation
scheme for minimum sum multicoloring the edges of planar graphs and
partial k-trees.

1 Introduction

In this paper we study an edge multicoloring problem that is motivated by ap-
plications in scheduling. We are given a graph with an integer demand x(e) for
each edge e. A multicoloring is an assignment of a set of x(e) colors to each
edge e such that the colors assigned to adjacent edges are disjoint. In multicol-
oring problems the usual aim is to minimize the makespan of the coloring, that
is, the total number of different colors used. However, in this paper a different
optimization goal is studied, which is related to minimizing the average comple-
tion time in scheduling problems. Given a multicoloring, the finish time of an
edge is defined to be the highest color assigned to it. In the minimum sum edge
multicoloring problem the goal is to minimize the sum of the finish times.

An application of edge coloring is to model dedicated scheduling of bipro-
cessor tasks. The vertices correspond to the processors and each edge e = uv
corresponds to a job that requires x(e) time units of simultaneous work on the
two preassigned processors u and v. The colors correspond to the available time
slots: by assigning x(e) colors to edge e, we select the x(e) time units when the
job corresponding to e is executed. A processor cannot work on two jobs at the
same time, this corresponds to the requirement that a color can appear at most

� Research is supported in part by grants OTKA 44733, 42559 and 42706 of the
Hungarian National Science Fund.

G. Persiano and R. Solis-Oba (Eds.): WAOA 2004, LNCS 3351, pp. 9–22, 2005.
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once on the edges incident to a vertex. The finish time of edge e corresponds to
the time slot when job e is finished, therefore minimizing the sum of the finish
times is the same as minimizing the sum of completion times of the jobs. Using
the terminology of scheduling theory, we minimize the mean flow time, which is
a well-studied optimization goal in the scheduling literature. Such biprocessor
tasks arise when we want to schedule file transfers between processors [4] or the
mutual diagnostic testing of processors [7]. Note that it is allowed that a job is
interrupted and continued later: the set of colors assigned to an edge does not
have to be consecutive, hence our problem models preemptive scheduling.

In [11] it is shown that for trees the problem is NP-hard, but admits a poly-
nomial time approximation scheme (PTAS). In this paper we extend the PTAS
to partial k-trees and planar graphs. The problem is NP-hard for partial 2-trees
and planar bipartite graphs even in the unit demand case [9], hence the approx-
imation schemes given in this paper cannot be improved to exact polynomial
time algorithms (assuming P �= NP).

Recently, the vertex coloring version of minimum sum multicoloring was in-
vestigated by several papers [2, 5, 6, 10]. In [5, 6] PTAS is given for the vertex
coloring version of the problem in the case when the graph is a tree, partial
k-tree, or a planar graph. The line graph of a bounded degree partial k-tree
has bounded treewidth, hence the PTAS of [5] for vertex coloring partial k-trees
can be used for the edge coloring of bounded degree partial k-trees. However, in
Section 3 we present a more efficient, linear time PTAS for edge coloring such
graphs. In Section 4 a PTAS is given for general partial k-trees by reducing
the problem to the bounded degree case. In Section 5 the PTAS is extended to
planar graphs: using standard techniques (the layering method of Baker [1]) we
show how the PTAS for partial k-trees can be used for planar graphs.

2 Preliminaries

The problem considered in this paper is the edge coloring version of minimum
sum multicoloring, which can be stated formally as follows:

Minimum Sum Edge Multicoloring (SEMC)
Input: A graph G(V, E) and a demand function x: E → N.
Output: A multicoloring Ψ : E → 2N such that |Ψ(e)| = x(e) for every
edge e, and Ψ(e1) ∩ Ψ(e2) = ∅ if e1 and e2 are adjacent in G.
Goal: The finish time of edge e in coloring Ψ is the highest color assigned
to it, fΨ (e) = max{c : c ∈ Ψ(e)}. The goal is to minimize fΨ (G) =∑

e∈E fΨ (e), the sum of the coloring Ψ .

We extend the notion of finish time to a set E′ of edges by defining fΨ (E′) =∑
e∈E′ fΨ (e). Given a graph G and a demand function x(e) on the edges of G,

the minimum sum that can be achieved is denoted by OPT(G, x).
As in [5, 6, 11], we divide the infinite color spectrum into geometrically in-

creasing layers. For some ε > 0 and integer � ≥ 0, the (ε, �)-decomposition divides
the set of colors into layers L0, L1, . . . and zones Z0, Z1, . . . , Z�. The layers are
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Extra segments
L0 L1 L2 L3 L4

L1 L2 L3 L4L0

Main zone Z0

Extra zone Z2

Fig. 1. The decomposition of the colors into layers (� = 3)

of geometrically increasing size: layer Li contains the range of colors from qi to
qi+1 − 1, where qi = 	(1 + ε)i
. (If qi = qi+1, then layer Li is empty). Denote by
Qi = |Li| = qi+1 − qi the size of the ith layer. The total size of layers L0, L1,
. . . , Li is qi+1 − 1. Later we will use that (1 + 2ε)qi ≥ qi+1 − 1 for every i ≥ 1.
That is, if we replace a color from layer Li with another color from Li, then the
new color is at most (1 + 2ε) times larger than the original.

Layer Li is divided into two parts: the first 1
1+ε�Qi colors form the main block

of layer Li and the remaining ε�
1+ε�Qi colors the extra block (see Fig. 1). The main

block of layer Li is denoted by Li. The union of the main block of every layer
Li is the main zone Z0. Divide the extra block of every layer Li into � equal
parts: these are the � extra segments of Li. The union of the jth extra segment
of every layer Li forms the jth extra zone Zj . Each extra zone contains ε

1+ε�Qi

colors from layer Li. We ignore rounding problems here. It can be shown that
by defining the zones carefully, one can achieve the following:

Lemma 1 ([11]). For given � and ε ≤ 1
2� , the (ε, �)-decomposition of the colors

has the following properties:

(a) For every c ≥ 1, zone Z0 contains at least c colors not greater than 	(1+ε�)c
.
(b) For every c ≥ 1 and 1 ≤ j ≤ �, zone Zj contains at least c colors not greater

than (2/ε) · c.
Given a multicoloring Ψ , the operation (ε, �)-augmentation creates a multi-

coloring Φ the following way. Consider the (ε, �)-decomposition of the colors, and
if Ψ(e) contains color c, then let Φ(e) contain instead the cth color from the main
zone Z0. By Lemma 1a, fΦ(e) ≤ 	(1 + ε�)fΨ (e)
, thus this operation increases
the sum by at most a factor of (1 + ε�). After the augmentation, the colors of
the extra zones are not used, only the colors of the main zone.

A tree decomposition of G(V, E) is a tree T (U, F ) together with a bag Ux ⊆ V
for each x ∈ U such that

– for every uv ∈ E, there is an x ∈ U with u, v ∈ Ux, and
– for every v ∈ V , the bags containing v induce a connected subtree of T .

The width of the decomposition is maxx∈U |Ux|−1, and the treewidth of a graph
is the smallest width that its tree decompositions can have. A partial k-tree is a
graph with treewidth at most k. For background on partial k-trees and treewidth,
the reader is referred to [3].
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In [11], the following scaling property is proved for trees: if the demand of
every edge is increased by at most a factor of 1 + ε, then the sum increases by
at most a factor of 1+ ε. As an application of the layer and zones defined above,
we prove a weaker property for partial k-trees: a 1+ ε increase of demand causes
an at most 1 + 2(k + 1)ε increase of the sum (Lemma 3). First we need a special
orientation, which will be used later as well.

Lemma 2. Let G be a partial k-tree. There is a proper k + 1-coloring of the
vertices of G, and an orientation of the edges of G such that the outdegree of
every vertex is at most k, and the outneighbors of a vertex have distinct colors.

Proof. Consider a tree decomposition T (U, F ) of G. Assume that the tree T is
rooted. For each vertex v of G, consider those nodes of T whose bags contain v,
and let fv be the highest such node (i.e., the node that is closest to the root).

The vertices can be colored with k + 1 colors such that the vertices in the
same bag have distinct colors (that is, we take a coloring of the chordal graph
induced by the decomposition).

Let e = uv be an edge of G. The trees Tu and Tv intersect, hence either node
fu ∈ U of u is descendant of fv ∈ U of v, or vice versa. If fu is the descendant of
fv, then we direct e from u to v, otherwise we direct it from v to u. If fu = fv,
then direct the edge uv arbitrarily. Notice that all the outneighbors of u are
contained in the bag of fu: if a subtree intersects Tu, and it contains an ancestor
of fu, then it has to contain fu as well. Now it is clear that u has at most k
outneighbors, and they have distinct colors.

Lemma 3. Let (G, x) be an instance of SEMC and let x′ be a demand func-
tion with x′(e) ≤ (1 + ε) · x(e) for every edge e. If G is a partial k-tree, then
OPT(G, x′) ≤ (1 + 2(k + 1)ε) ·OPT(G, x).

Proof. Let Ψ be an optimum coloring of (G, x), and let Ψ ′ be the (2ε, k + 1)-
augmentation of Ψ . By Lemma 1, we have fΨ ′(e) ≤ (1+2(k+1)ε)fΨ (e) for every
edge e.

Consider the coloring and orientation given by Lemma 2. Let e1, . . . , e� be
those edges that enter v, assume that fΨ ′(e1) ≤ fΨ ′(e2) ≤ · · · ≤ fΨ ′(e�). Edge
ei requires x′(ei)− x(ei) ≤ εx(ei) extra colors to satisfy demand function x′. If
vertex v has color c, then we use extra zone Zc to give additional colors to these
edges. The first εx(e1) colors of Zc are given to edge e1, the next εx(e2) colors
are given to e2. It is clear that no conflict arises with the assignment of these
new colors. If two edges conflict in zone Zc, then their end vertices have the
same color c. By Lemma 2, this is only possible if they enter the same vertex,
but in this case the construction ensures that the edges receive different colors.

We show that these additional colors do not increase the finish time of
the edges. The finish time of ei is clearly at least

∑i
j=1 x(ei) in Ψ ′. The last

color given to edge ei is color
∑i

j=1 εx(ei) from extra zone Zc. However, by
Lemma 1b, zone Zc contains at least

∑i
j=1 εx(ei) colors below 2

2ε ·
∑i

j=1 εx(ei) =∑i
j=1 x(ei) ≤ fΨ ′(ei). Therefore it remains true that fΨ ′(e) ≤ (1+2(k+1)ε)fΨ (e)

for every edge e.
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3 Bounded Degree Partial k-Trees

In this section we show that SEMC admits a linear time PTAS for bounded
degree partial k-trees. If G is a partial k-tree with maximum degree D, then its
line graph has treewidth at most (k + 1)D − 1 (see [3–Lemma 32]). Therefore
the PTAS given by Halldórsson and Kortsarz [5] for the minimum sum vertex
coloring of partial k-trees can be used to edge color bounded degree partial k-
trees. However, the time complexity of their algorithm is nO(k2/ε5). We show
here that for line graphs of bounded degree partial k-trees the running time can
be reduced to linear.

The main idea of the PTAS in [5] is that one can assign a polynomial number
of color sets to each vertex such that the graph has a good approximate coloring
where every vertex uses one of the sets assigned to it. This is proved by using
probabilistic arguments and by transforming the solution to a standard form.
The best coloring using the selected color sets can be found in polynomial time
with the standard dynamic programming algorithm of partial k-trees. In [11] a
similar path is taken to give a linear time PTAS for SEMC in bounded degree
trees: it is shown that a constant number of color sets can be assigned to the
edges such that there is good approximation with these sets. In this case the
probabilistic argument of [5] can be replaced by a simple greedy algorithm. Here
we construct a constant number of color sets for the edges of bounded degree
partial k-trees, yielding a linear time PTAS. The construction depends on some
strong results concerning the asymptotics of the chromatic index.

3.1 Approximating the Makespan

As explained in the introduction, in this paper our goal is to minimize the sum
of finish times, and we are not interested in minimizing the makespan. However,
(as in [5] and [11]) the algorithm for minimizing the sum requires the use of some
results on approximating the makespan.

Minimizing the makespan is closely related to the chromatic index problem.
Given a graph G and a demand function x on the edges, let (G, x) denote the
multigraph obtained by replacing every edge e by x(e) parallel edges, and let
χ′(G, x) be the chromatic index of (G, x). It is clear that the minimum makespan
with demand x is χ′(G, x).

Shannon [12] has shown that χ′(G) ≤ 	3Δ(G)/2
 for every multigraph G,
where Δ(G) is the maximum degree of G. Since Δ(G) is a lower bound on the
fractional chromatic index χ′∗(G), this implies that χ′(G) ≤ 3χ′∗(G)/2. The
following theorem shows that better bounds can be given for χ′(G) if χ′∗(G) is
large:

Theorem 1 (Kahn, [8]).
For every γ > 0, there exists D(γ) such that for any multigraph G with

χ′∗(G) > D(γ), we have χ′ < (1 + γ)χ′∗(G).

We use this result to construct a constant number of color sets that can
approximate the makespan:
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Lemma 4. For every ε > 0 and integers Δ, t > 0, there is a family of color sets
Ct,Δ,ε such that if the maximum degree of G is Δ, and graph G with demand
x(e) has a coloring with makespan t, then it has a coloring with makespan at
most (1 + ε)t such that every edge receives a color set from Ct,Δ,ε. Moreover, the
size of Ct,Δ,ε depends only on ε and Δ.

Proof. Set γ = ε/6, and let x1(e) = 	4D(γ)Δ/(γt) · x(e)
, where D(γ) is from
Theorem 1. It follows that χ′∗(G, x1) ≤ 4D(γ)Δ/(γt) · χ′∗(G, x) ≤ 4D(γ)Δ/γ ·
χ′(G, x)/t ≤ 4D(γ)Δ/γ. Let x2(e) = �4D(γ)Δ/(γt) · x(e)
. In x2 every edge
requires at most one color more than in x1, therefore by Vizing’s theorem, x2
can be satisfied with Δ + 1 new colors: χ′∗(G, x2) ≤ χ′∗(G, x1) + Δ + 1. If
χ′∗(G, x2) > 2D(γ)Δ/γ, then we can apply Theorem 1 to show that χ′(G, x2) ≤
(1 + γ)χ′∗(G, x2) ≤ (1 + γ)(χ′∗(G, x1) + Δ + 1) ≤ (1 + γ)2χ′∗(G, x1) ≤ (1 +
γ)24D(γ)Δ/γ. If χ′∗(G, x2) ≤ 2D(γ)Δ/γ, then χ′(G, x2) ≤ 3D(γ)Δ/(γ) follows
simply from χ′ ≤ 3χ′∗/2. Now if we repeat every color �γt/(4D(γ)Δ)
 times in
the coloring of (G, x2), then we obtain a coloring of (G, x) with at most χ′(G, x2)·
�γt/(4D(γ)Δ)
 ≤ χ′(G, x2)·(1+γ)·γt/(4D(γ)Δ) ≤ (1+γ)3t ≤ (1+ε)t colors (in
the first inequality we assume that t is sufficiently large). Let Ct,Δ,ε contain those
color sets that can be obtained from a subset of {1, . . . , 	(1 + ε)4D(γ)Δ/γ
} by
repeating every color �γt/(4D(γ)Δ)
 times. What we have shown is that there
is an (1 + ε)-approximate coloring where every edge uses a set from Ct,Δ,ε. The
size of Ct,Δ,ε is 2�(1+ε)4D(γ)Δ/γ� ≤ 2O((1+ε)D(ε/4)Δ/ε), which depends only on ε
and Δ. ��

3.2 Approximating the Sum

To give a linear time PTAS for SEMC on almost bounded degree partial k-trees,
first we construct a constant number of color sets for each edge. Moreover, we
give a slightly more general algorithm for SEMC that works on “almost bounded
degree” partial k-trees as well. A pendant edge is an edge that has a degree one
end vertex, an almost bounded degree graph is a graph that has bounded degree
after deleting the pendant edges. A non-pendant edge will be called a core edge,
and the number of core edges incident to a vertex will be called the core degree
of the vertex. Deleting the pendant edges of G gives the core G0 of G. The
treewidth of the line graph of an almost bounded degree partial k-tree is not
necessarily bounded, hence the vertex coloring algorithm of [5] cannot be used
for such graphs.

Lemma 5. For every ε0 > 0 and integers k, y, D > 0 there is a family of color
sets Dk,y,D,ε0 such that for every partial k-tree G with maximum core degree D
and every demand function there is a (1 + ε0)-approximate coloring where every
core edge e with demand y receives a color set from Dk,y,D,ε0 . Moreover, the size
of Dk,y,D,ε0 depends only on k, D, and ε0.

Proof. Let Ψ be an optimum coloring of the instance (G, x). With a series of
transformations, we modify Ψ to a special form where only a constant number of
possible color sets can appear at a given core edge. Moreover, the transformations
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will increase the sum only by a factor of 1 + ε0. Most of the ideas in this proof
are taken from [5].

Set ε := ε0/(10D) and let Ψ ′ be obtained by performing an (ε, D + 2)-
augmentation on Ψ . By Lemma 1a, we have fΨ ′(G) ≤ (1 + (D + 2)ε)fΨ (G).

The first step is to ensure that every core edge e uses the main zone only
between εx(e)/2 and 2x(e)/ε. This means that e can use the main zone only
from layer 	log1+ε εx(e)/2
 to layer �log1+ε 2x(e)/ε
, that is, only from at most
log1+ε((2x(e)/ε)/(εx(e)/2)) + 2 = log1+ε 4/ε2 + 2 = O(1/ε · log 1/ε) layers.

By Vizing’s Theorem, one can assign a type 1, . . . , D + 1 to every core edge
e such that adjacent edges have different types. If fΨ ′(e) > 2x(e)/ε for a core
edge e of type j, then modify Ψ ′(e) to be the first x(e) colors of zone Zj . By
Lemma 1b, Zj contains at least x(e) colors not greater than 2x(e)/ε, therefore
the modification does not increase the finish time of edge e.

If Ψ ′(e) contains colors from the main zone below εx(e)/2, then delete these
colors and let Ψ ′(e) contain instead the first εx(e)/2 colors from zone Zj . There
are at least εx(e)/2 colors in Zj below 2/ε · εx(e)/2 = x(e). Since the finish time
of e is at least x(e), hence this modification does not increase the finish time of e.

For every core edge e, define xi(e) := |Ψ ′(e) ∩ Li| the number of colors used
by e in the main block of layer i. In the core graph G0, the multicoloring problem
with demand xi(e) has a solution with makespan |Li|: for example, Ψ ′(e) ∩ Li

is such a coloring. Therefore by Lemma 4, there is a coloring Ψi with makespan
	(1 + ε

2 )|Li|
 such that Ψi(e) ∈ C|Li|,D,ε/2. We let Ψi determine how the colors
are used in the main block of layer Li. That is, if Ψi assigns color c to edge e,
then we assign the cth color of Li to e. However, Ψi uses 	(1 + ε

2 )|Li|
 colors,
so we run out of the colors of Li. Extra zone ZD+2 is used to provide 	 ε

2 |Li|

additional colors. We use the first 	 ε

2 |L1|
 colors of ZD+2 when recoloring L1,
the next 	 ε

2 |L2|
 colors for the recoloring of L2, and so on. This means that
when we recolor Li, only the first

∑i
j=1	 ε

2 |L1|
 colors of ZD+2 are used. Zone
ZD+2 contains that many colors below 2

ε

∑i
j=1	 ε

2 |Lj |
 ≤
∑i

j=1 |Lj | (Lemma 1b).
Therefore we do not use colors above layer Li, and the last color of every edge
remains in the same layer. As noted in Section 2, this implies that the finish
time is increased by at most a factor of 1 + 2ε for every edge.

In the previous paragraph we have recolored all the core edges at the same
time, thus no conflict arises between the core edges, but there can be conflicts
between a core edge and a pendant edge. However, at each vertex v, the number
of colors used by the core edges from the main block of layer i did not increase.
In fact, it is possible that it was decreased since in the recoloring extra zone
ZD+2 was also used. Therefore there remains enough colors in Li to satisfy the
requirements of the pendant edges attached to v. This means that the last color
of each pendant edge will remain in the same layer, hence the finish time of a
pendant edge increases by at most a factor of (1 + 2ε). Thus the finish time of
every edge is at most (1 + 2ε)(1 + (D + 2)ε) ≤ (1 + ε0) times higher than in Ψ ,
and the coloring obtained is (1 + ε0)-approximate.

It is easy to show that only a constant number of different color sets can arise
for a given edge e. This follows from the facts that e uses the main zone only in
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a constant number of different layers, and in each layer it has a constant number
of different possibilities. ��

The PTAS uses standard dynamic programming methods to find the best
coloring with the selected color sets. However, there is a slight twist: the pendant
edges have to be handled differently. The idea is that if the core edges incident
to v are given a coloring, then this determines what is the best way of coloring
the pendant edges incident to v. Details omitted.

Theorem 2. For every ε0 > 0, and integers k, D > 0, there is a linear time
algorithm that gives a (1 + ε0)-approximate solution to the SEMC problem for
partial k-trees with maximum core degree D. ��

4 General Partial k-Trees

We prove that SEMC admits a linear time PTAS for partial k-trees. The main
idea is to modify the graph to be an almost bounded degree graph. After these
modifications the algorithm of Theorem 2 can be used, and we show that the
coloring for the almost bounded degree graph can be transformed into a coloring
of the original graph with only a small increase of the sum.

Theorem 3. For every ε > 0 and integer k > 0, there is a linear time algorithm
that gives a (1+ ε0)-approximate solution to the SEMC problem for every partial
k-tree G and demand function x0.

Proof. We show how to find a (1 + Kε)-approximate solution in linear time,
where K is a constant depending only on k. This implies that there is a (1 + ε)-
approximation algorithm for every k and ε > 0. The algorithm consists of a
series of phases, in the following we describe these phases.

Phase 1: Rounding the Demands. Let x(e) be the smallest qi that is not
smaller than x0(e). Since qi+1 ≤ (1 + ε)i+1 ≤ (1 + ε)(qi + 1), thus x(e) ≤
(1 + ε)x0(e). Therefore by Lemma 3, this modification increases the minimum
sum by at most a factor of 1 + 2(k + 1)ε, hence a (1 + O(ε))-approximation for
(G, x) is also a (1 + O(ε))-approximation for (G, x0). An edge e with demand
qi will be called a class i edge (if x(e) = qi for more than one i, then take the
smallest i).

Assume we have a subset of the edges that are incident to the same vertex,
and there are exactly c(i) edges of class i among them. The best way to color
these edges is to order them by increasing demand size, and color them in this
order. Therefore the sum of these edges in every coloring is at least

∞∑
i=1

c(i)∑
j=1

(
i−1∑
k=1

c(k)qk + jqi

)
=

∞∑
i=1

⎛
⎝c(i)

i−1∑
k=1

c(k)qk + qi

c(i)∑
j=1

j

⎞
⎠ =

∞∑
i=1

(
c(i)

i−1∑
k=1

c(k)qk + qi(c(i) + 1)c(i)/2

)
(1)
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The parentheses in the first expression contains the finish time of the jth edge
of class i. The first term is the contribution of the edges with class less than i,
the second term is the contribution of the first j edges of class i.

Phase 2: Classifying the edges. Consider the (k + 1)-coloring of the vertices
and the orientation of the edges given by Lemma 2. The edges of the graph are
divided into large edges, small edges, and frequent edges. It will be done in such a
way that at most D := 6/ε7 large edges enter every vertex. Denote by n(v, i) the
number of class i edges entering v. Let N(v) be the largest i such that n(v, i) > 0
and set F := 6/ε5. Let e be a class i edge entering v. If n(v, i) > F , then e is
a frequent edge. If n(v, i) ≤ F and i ≤ N(v) − 1/ε2, then e is a small edge.
Otherwise, if n(v, i) ≤ F and i > N(v)− 1/ε2, then e is a large edge. Clearly, at
most F · 1/ε2 = 6/ε7 = D large edges can enter v: for each class N(v), N(v)− 1,
. . . , N(v)− 1/ε2 + 1, there are at most F such edges.

Phase 3: Splitting the edges. The graph is split at the tail of every small
and frequent edge. That is, if e = −→uv is a small or frequent edge, then add a new
vertex u′, and replace −→uv by

−→
u′v. The resulting graph G′ is an almost bounded

degree graph. Deleting the pendant edges deletes every small and frequent edge,
therefore only the large edges remain. We have seen that at most D large edges
enter every node, and the outdegree of every vertex is at most k, thus the degree
of the remaining graph is at most D + k. Therefore graph G′ can be colored
with the algorithm of Theorem 2 in linear time. This gives a (1+ ε)-approximate
coloring Ψ1 of G′. Coloring Ψ1 can be used as a coloring for the original graph
G′, but in this case there might be conflicts: a small or frequent edge might be
in conflict with the edges incident to its tail vertex. In the rest of the proof,
we transform Ψ1 into a proper coloring of G in such a way that the sum of the
coloring does not increase too much. We will distinguish between the following
4 types of conflicts, they will be handled separately in the phases to follow:

1. Conflicts involving a small edge −→uv.
2. Conflict between two frequent edges −→uv1 and −→uv2.
3. Conflict between a frequent edge −→uv1 and a large edge −→uv2.
4. Conflict between a frequent edge −→uv and a frequent or large edge −→wu.

Phase 4: Small Edges. In this phase we resolve the conflicts of the first type.
Consider the (ε, k+1)-augmentation of the coloring Ψ1, this results in a (1+O(ε))-
approximate coloring Ψ2. We modify Ψ2 in such a way that the small edges use
only the extra zones. More precisely, if the head of a small edge e has color
r ∈ {1, 2, . . . , k + 1}, then e is recolored using the colors in Zr. Since the extra
zones contain only a very small fraction of the color spectrum, the recoloring can
significantly increase the finish time of the small edges, but not more than by a
factor of 2/ε (Lemma 1b). However, we show that the total demand of the small
edges entering v is so small compared to the demand of the largest edge entering
v, that their total finish time will be negligible, even after this large increase.
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By definition, the largest edge entering v has demand qN(v). Let Sv be the
set of small edges entering v. Let r be the color of vertex v. Color the edges in
Sv one after the other, in the order of increasing demand size, using only the
colors in Zr. Call the resulting coloring Ψ3. We claim that fΨ3(Sv) ≤ εqN(v) for
every node v, thus transforming Ψ2 into Ψ3 increases the total sum by at most∑

v∈G fΨ3(Sv) ≤ ε
∑

v∈G qN(v) ≤ εfΨ2(G) and fΨ3(G) ≤ (1+ε)fΨ2(G) follows. To
give an upper bound on fΨ3(Sv), we assume the worst case, that is, n(v, i) = F
for every i ≤ N(v) − 1/ε2. Imagine first that the small edges are colored using
the full color spectrum, not only with the colors of zone Zr. Assume that the
small edges are colored in the order of increasing demand size, and consider a
class m edge e. In the coloring, only edges of class not greater than m are colored
before e. Hence the finish time of e is at most

m∑
i=0

n(v, i)qi ≤ F

m∑
i=0

(1 + ε)i ≤ 6(1 + ε)/ε6 · (1 + ε)m

≤ 14/ε6 · 1
2
(1 + ε)m ≤ 14/ε6 · 	(1 + ε)m
 = 14/ε6 · qm.

That is, the finish time of an edge is at most 14/ε6 times its demand (in the
second inequality, we used

∑m
i=0(1 + ε)i = ((1 + ε)m+1 − 1)/ε < (1 + ε)m+1/ε).

Therefore the total finish time of the small edges is at most 14/ε6 times the total
demand, which is

14
ε6

N(v)−1/ε2∑
i=0

n(v, i)qi ≤ 84
ε11

N(v)−1/ε2∑
i=0

(1 + ε)i ≤ 85
ε12

(1 + ε)N(v)−1/ε2

≤ 85
ε12

· 2−1/ε · (1 + ε)N(v) ≤ ε2

2
· 1
2
(1 + ε)N(v) ≤ ε2

2
· 	(1 + ε)N(v)
 =

ε2

2
· qN(v).

(In the third inequality we use (1 + ε)1/ε ≥ 2, in the fourth inequality it is
assumed that ε is sufficiently small that 21/ε ≥ 4 · 85/ε14 holds.) However, the
small edges do not use the full color spectrum, only the colors in zone Zr. By
Lemma 1b, zone Zr contains at least c colors up to 2/ε · c, thus every finish time
in the calculation above should be multiplied by at most 2/ε. Therefore the sum
of the small edges is at most 2/ε · ε2/2qN(v) ≤ εqN(v) as claimed, and Ψ3 is a
(1 + O(ε))-approximate coloring.

Phase 5: Reordering the frequent edges. Now we have a coloring Ψ3 of
G such that the only type of conflict that is possible is between a frequent
edge −→uv and an edge incident to u. In this section, we resolve the conflicts of
the second type. Consider the F (v, i) frequent edges of class i that enter v. We
randomly reorder the color sets assigned to these edges. That is, take a uniformly
distributed random permutation σ of the class i frequent edges entering v, and
set Ψ4(e) = Ψ3(σ(e)) for these edges. Since all the class i edges have the same
demand, a class i edge can receive the color set assigned to another edge of class
i. Moreover, since the reordered edges have the same head v, the only conflicts
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that can arise are of types 2–4. We repeat the reordering independently for every
v and i, and set Ψ4(e) = Ψ3(e) for every small and large edge.

We argue that after the reordering, with high probability there are only
relatively few type 2 conflicts, and these conflicts can be resolved with only
a small increase of the sum. A frequent edge −→uv1 that conflicts with another
frequent edge −→uv2 will be called a marked edge. Denote by M(v, i) the number
of class i marked edges entering v. The following claim bounds the expected
number of marked edges:

Claim. For every v and i, E[M(v, i)] ≤ ε4F (v, i).

Proof. Consider frequent edges −→uv1 of class i1 and −→uv2 of class i2. We bound the
probability that they conflict. Let a1, . . . , aF (v1,i1) be the class i1 frequent edges
entering v1 ordered by increasing finish time. For every 1 ≤ j ≤ F (v1, i1), denote
by Aj the interval between the first and last color of Ψ3(a1), i.e., Aj = [min{c :
c ∈ Ψ3(aj)}, max{c : c ∈ Ψ3(aj)}]. Since the algorithm of Theorem 2 colors the
frequent (pendant) edges entering v1 one after the other, thus the intervals Aj

are disjoint. The intervals Bj are similarly defined for 1 ≤ j ≤ F (v2, i2), but
now we consider the class i2 edges entering v2. Let A (resp. B) be the interval
between the first and last color of Ψ4(−→uv1) (resp. Ψ4(−→uv2)). If −→uv1 and −→uv2 conflict
in Ψ4, then A and B intersect. By bounding the probability that A ∩B �= ∅, we
give a bound on the probability that the two edges are in conflict.

Because of the way the color sets were reordered, interval A can be any of
the intervals Aj with probability 1/F (v1, i1), and similarly for the interval B.
Since the reordering at vertices v1 and v2 are independent, (A, B) = (Aj1 , Bj2)
with probability [F (v1, i1)F (v2, i2)]−1 for any pair (Aj1 , Bj2). We show that the
number of pairs (Aj1 , Bj2) such that Aj1∩Bj2 �= ∅ is at most F (v1, i1)+F (v2, i2).
The proof is by induction on F (v1, i1) + F (v2, i2), the total number of intervals.
If either F (v1, i1) or F (v2, i2) is zero, then the claim trivially holds. Assume
without loss of generality that the right end point of A1 is not greater than the
right end point of B1. If we remove interval A1, then the number of non-disjoint
pairs is decreased by at most one, since A1 can intersect only B1. Therefore
the number of intervals is decreased by one, the number of non-disjoint pairs is
decreased by at most one, completing the induction. Therefore there are at most
F (v1, i1) + F (v2, i2) non-disjoint pairs, and the probability that A∩B �= ∅ is at
most

F (v1, i1) + F (v2, i2)
F (v1, i1)F (v2, i2)

=
1

F (v1, i1)
+

1
F (v2, i2)

≤ ε5/3.

Since the outdegree of u is at most k, thus edge −→uv1 can be in type 2 conflict with
at most k − 1 possible edges. Therefore −→uv1 is marked with probability at most
(k − 1)ε5/3 ≤ ε4. Thus the expected number of class i marked edges entering v
is at most ε4F (v, i). ��

Take an (ε, k+1)-augmentation of Ψ4. If vertex v has color r, then the marked
edges entering v are recolored using extra zone Zr. The edges are recolored in
increasing order of demand size: first the class 1 edges, etc. It can be shown that
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the expected total sum of the recolored marked edges is at most 2/ε · ε4 = 2ε3

times the total sum of the frequent edges: this follows from Lemma 1b, from the
claim, and from the convexity of the expression (1). Thus by Markov’s Inequality,
with probability at least 1−2ε2, the transformation increases the sum by at most
a factor of (1 + ε) and the resulting coloring Ψ5 is (1 + O(ε))-approximate.

Phase 6: Resolving type 3 conflicts. We show that with high probability
there are only few type 3 conflicts in Ψ5, therefore they can be resolved with only
a small increase of the sum. If a frequent edge −→uv1 conflicts with a large edge−→uv2, then we remove the conflicting colors from the large edge. We say that a
large edge −→uv is marked if more than εx(−→uv)/2 colors were removed from it. Take
an (ε, k + 1)-augmentation of Ψ5, the removed colors of the marked edges are
replaced using the extra zones. This results in a coloring Ψ6, where every edge e
lost at most εx(−→uv)/2 colors. By an argument similar to the one in Phase 5, it can
be shown that with high probability Ψ6 is an (1 + O(ε))-approximate coloring.
Furthermore, by Lemma 3 the size of the color sets can be increased by a factor
of (1+ ε) at the cost of increasing the sum by a factor of 1+2(k +1)ε. Therefore
we get a (1 + O(ε))-approximate coloring Ψ7 that satisfies all the demands.

Phase 7: Low frequent edges. In this phase we ensure that if a frequent edge
e is conflicting, then edge e uses only colors above 2x(e)/ε. This will help us in
resolving the type 4 conflicts in Phase 8.

If a frequent edge e has finish time at most 8x(e)/ε2 in Ψ7, then e will be
called a low edge. Clearly, there can be at most 8/ε2 low edges of a given class
entering vertex v. First we ensure that the low frequent edges are not conflicting.
Let e1, . . . , em be the low edges entering node v, ordered by increasing demand
size. Let us perform an (ε, k + 1)-augmentation on Ψ7. If v has color r, then we
use the colors in zone Zr to recolor the low edges: the first x(e1) colors in Zr

are given to e1, the next x(e2) colors are given to e2 and so on. In the resulting
coloring Ψ8 the finish time of the low edges can increase. However, we show that
this increase is negligible compared to the total sum of the frequent edges.

Denote by F (v, m) the number of class m frequent edges entering v, and
by �(v, m) ≤ 8/ε2 the number of class m low frequent edges entering v. Since
F (v, m) ≥ 6/ε5 whenever �(v, m) is non-zero, we have �(v, m) ≤ 2ε3F (v, m). By
Lemma 1b and the convexity of the expression (1), this means that the total sum
of the low edges, even if they use only an extra zone, is at most 2/ε ·2ε3 < ε times
the sum of the frequent edges. Thus Ψ8 is a (1 + O(ε))-approximate coloring.

It is still possible that a conflicting frequent edge e uses colors up to 2x(e)/ε,
but in this case its finish time is at least 8x(e)/ε2. We perform once again an
(ε, k+1)-augmentation on Ψ8. Consider the conflicting frequent edges entering v
in increasing order of demand size, and if we encounter an edge e that uses colors
up to 2x(e)/ε, then these colors are replaced using the next available colors of
zone Zr (r is the color of vertex v). More precisely, we want to ensure that every
color of e is at least 2x(e)/ε, hence we assign to it the next available color above
2x(e)/ε. At the point when edge e is recolored, only colors up to 2x(e)/ε have
been migrated to zone Zr, since the edges before e have demand not greater than
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x(e). Therefore the new colors are not larger than the smallest 4x(e)/ε colors
of zone Zr, and these colors are at most (2/ε) · 4x(e)/ε = 8x(e)/ε2. We have
ensured that every frequent edge has finish time greater than 8x(e)/ε2, thus the
recoloring does not increase the sum. Therefore we obtain a coloring Ψ9 with
fΨ9(G) = fΨ8(G) where every frequent edge e uses only colors above 2x(e)/ε.

Phase 8: Resolving type 4 conflicts. First perform an (ε, k+1)-augmentation
on Ψ9. Let e = −→uv be a frequent edge that conflicts with some of the edges entering
u. Let the color of vertex u be r. There are at most x(e) colors that are used
by both e and an edge entering u. We resolve these conflicts by recoloring the
edges entering u in such a way that they use the first at most x(e) colors in zone
Zr instead of the colors in Ψ9(e). It is clear that if this operation is applied for
every frequent edge e, then the resulting coloring Ψ10 does not contain type 4
conflicts.

In Phase 7 we have ensured that a conflicting frequent edge uses only colors
above 2x(e)/ε. Therefore if an edge −→wu is recolored, then it has finish time at
least 2x(e)/ε, otherwise it does not conflict with frequent edge e = −→uv. On the
other hand, by Lemma 1b, zone Zr contains at least x(e) colors up to 2x(e)/ε,
thus the recoloring does not add colors above that. Therefore the finish time of−→wu is not increased. Thus in this phase the sum is only increased by the (ε, k+1)-
augmentation. Therefore finally we obtained a proper (1 + O(ε))-approximate
coloring Ψ10. ��

5 Planar Graphs

In [5] the PTAS for minimum sum multicoloring the vertices of partial k-trees is
extended to planar graphs using the layering method of Baker [1]. In this section
we follow a similar path to obtain a linear time PTAS for SEMC on planar
graphs. To present the algorithm, we will need the definition of t-outerplanar
graphs:

Definition 1 (t-outerplanar). An embedding of graph G(V, E) is 1-outerplanar
(or simply outerplanar), if it is planar, and all vertices lie on the exterior face.
For t ≥ 2, an embedding of a graph G is t-outerplanar, if it is planar, and when
all vertices on the outer face are deleted, then a (t−1)-outerplanar embedding of
the resulting graph is obtained. A graph is t-outerplanar, if it has a t-outerplanar
embedding. A t-outerplanar embedding divides the vertices into t layers: layer �1
contains the vertices on the outer face, while for i ≥ 2, layer �i contains those
vertices that are on the outer face after deleting layers �1, . . . , �i−1.

Theorem 4. For every ε > 0, there is a linear time (1 + ε)-approximation
algorithm for SEMC on planar graphs.

Proof. A planar embedding of G can be found in linear time. Assume that this
embedding is t-outerplanar for some integer t. Set K = 4/ε2. Denote by Ei the
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edges connecting layer i and i + 1. For 1 ≤ i ≤ K, let Gi be the subgraph of G
spanned by the edges in Ei, Ei+K , Ei+2K , . . . . Each Ei spans a 2-outerplanar
graph, hence each Gi is 2-outerplanar. A theorem of Bodlaender [3–Theorem 83]
assures that a t-outerplanar graph has treewidth at most 3t − 1, therefore we
can use Theorem 3 to find a (1 + ε)-approximate coloring Ψi for each graph
Gi in linear time. Notice that the edges in the graphs Gi are pairwise disjoint.
Therefore there is a 1 ≤ i′ ≤ K such that the minimum sum on Gi′ is at most
OPT(G, x)/K, and consequently, the cost of Ψi′ is at most (1+ ε)OPT(G, x)/K.

Delete the edges of Gi′ from G, the resulting graph is clearly K-outerplanar.
Therefore it has treewidth at most 3K − 1, and Theorem 3 can be used to find
a (1 + ε)-approximate coloring Ψ1. Perform an (ε, 1)-augmentation of Ψ1, this
increases the sum by at most a factor of (1 + ε). We use extra zone Z1 to color
the edges in Gi′ . If Ψi′ assigns color c to edge e, then assign to e the cth color
of Z1. By Lemma 1b, the sum of the edges in Gi′ will be at most 2/ε times the
cost of Ψi′ , that is, at most 2/ε · (1 + ε)OPT(G, x)/K ≤ εOPT(G, x). Therefore
the resulting coloring is a (1 + O(ε))-approximate coloring for G. ��
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Abstract. In competitive analysis, we usually do not put any restric-
tions on the computational complexity of online algorithms, although
efficient algorithms are preferred. Thus if such an algorithm were given
the entire input in advance, it could give an optimal solution (in ex-
ponential time). Instead of giving the algorithm more knowledge about
the input, in this paper we consider the effects of giving an online bin
packing algorithm larger bins than the offline algorithm it is compared
to. We give new algorithms for this problem that combine items in bins
in an unusual way and give bounds on their performance which improve
upon the best possible bounded space algorithm. We also give general
lower bounds for this problem which are nearly matching for bin sizes
b ≥ 2.

1 Introduction

In this paper we investigate the bin packing problem, one of the oldest and most
thoroughly studied problems in computer science [1, 2]. In particular, we inves-
tigate this problem using the resource augmentation model, where the online
algorithm has bins of size b ≥ 1 and is compared to an offline algorithm that
has bins of size 1. We show improved upper bounds and general lower bounds
for this problem.

Problem Definition. In the classical bin packing problem, we receive a se-
quence σ of items p1, p2, . . . , pN . Each item has a fixed size in (0, 1]. In a slight
abuse of notation, we use pi to indicate both the ith item and its size. We have
an infinite supply of bins each with capacity 1. Each item must be assigned to
a bin. Further, the sum of the sizes of the items assigned to any bin may not
exceed its capacity. A bin is empty if no item is assigned to it, otherwise it is
used. The goal is to minimize the number of bins used.
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In the resource augmentation model [7, 9], one compares the performance of
a particular algorithm A to that of the optimal offline algorithm (denoted by
opt) in an unfair way. The optimal offline algorithm uses bins of capacity one,
where A is allowed to use bins of capacity b > 1. The goal is still to minimize
the number of bins used.

In the online versions of these problems, each item must be assigned in turn,
without knowledge of the next items. Since it is impossible in general to pro-
duce the best possible solution when computation occurs online, we consider
approximation algorithms. Basically, we want to find an algorithm that incurs
cost which is within a constant factor of the minimum possible cost, no matter
what the input is. This constant factor is known as the asymptotic performance
ratio.

The resource augmentation model was introduced due to the following draw-
back of standard competitive analysis. Competitive analysis compares the per-
formance of an online algorithm, which must pack each item upon arrival, to
that of an omniscient and all-powerful offline algorithm that gets the input as a
set. Resource augmentation gives more power to the online algorithm, making
the analysis more general.

A bin-packing algorithm uses bounded space if it has only a constant number
of bins available to accept items at any point during processing. These bins are
called open bins. Bins which have already accepted some items, but which the
algorithm no longer considers for packing are closed bins. While bounded space
algorithms are sometimes desirable, it is often the case that unbounded space
algorithms can achieve lower performance ratios.

We define the asymptotic performance ratio more precisely. For a given input
sequence σ, and a fixed bin size b, let costA,b(σ) be the number of bins (of size
b) used by algorithm A on σ. Let cost(σ) be the minimum possible cost to pack
items in σ using bins of size 1. The asymptotic performance ratio for an algorithm
A is defined to be

R∞
A,b = lim sup

n→∞
max

σ

{
costA,b(σ)
cost(σ)

∣∣∣∣∣cost(σ) = n

}
.

The optimal asymptotic performance ratio is defined to be R∞
opt,b = infA R∞

A,b.
Our goal is to find for all values of b (b ≥ 1) an algorithm with asymptotic
performance ratio close to R∞

opt,b.

Previous Results. The classic online bin packing problem was first investigated
by Ullman [12]. He showed that the First Fit algorithm has performance ratio
17
10 . This result was then published in [5]. Johnson [6] showed that the Next Fit
algorithm has performance ratio 2. Yao showed that Revised First Fit has
performance ratio 5

3 . Currently the best known lower bound is 1.54014, due to
van Vliet [13].

Define u1 = 2, ui+1 = ui(ui−1)+1, and h∞ =
∑∞

i=1
1

ui−1 ≈ 1.69103. Lee and
Lee showed that the Harmonic algorithm, which uses bounded space, achieves
a performance ratio arbitrarily close to h∞ [8]. They further showed that no



Online Bin Packing with Resource Augmentation 25

bounded space online algorithm achieves a performance ratio less than h∞ [8].
In addition, they developed the Refined Harmonic algorithm, which they
showed to have a performance ratio of 273

228 < 1.63597. The next improvements
were Modified Harmonic and Modified Harmonic 2. Ramanan, Brown, Lee
and Lee showed that these algorithms have performance ratios of 538

333 < 1.61562
and 239091

148304 < 1.61217, respectively [10]. Currently, the best known upper bound
is 1.58889 due to Seiden [11].

Bin packing with resource augmentation was first studied by Csirik and
Woeginger [3]. They give an optimal bounded space algorithm. Naturally, its
asymptotic performance ratio is strictly decreasing as a function of the bin size
of the online algorithm. Some preliminary general lower bounds for bin packing
with resource augmentation were given in [4]. In Section 5, we will compare them
to our new lower bounds.

Our Results. In this paper, we present new algorithms for the online bin packing
problem in the resource augmentation model. We introduce a general method
which extends many previously studied algorithms for bin packing. This method
takes the online bin size b as a parameter. We study four instances of the general
method, each of our algorithms performs well for a different interval of values
of b. By partitioning the interval [1, 2) in four sub-intervals and using the most
appropriate algorithm on each sub-interval, we give upper bounds that improve
upon the bounds from [3] on the entire interval. That is, these algorithms are
better than the best possible bounded space algorithm.

Our analysis technique extends the general packing algorithm analysis tech-
nique developed by Seiden [11]. Specifically, unlike previous algorithms which
pack the relatively small items by a very simple heuristic (Next-Fit, or any fit),
we combine small items with large items in the same bins in order to achieve
good performance (see the algorithms SMH and TMH).

We also show new lower bounds for this model, by using improved sequences.
We omit detailed descriptions of these sequences in this extended abstract. For
b ≥ 2, our lower bounds show that the best bounded space algorithm is very
close to optimal (among unbounded space algorithms).

2 The HARMONIC Algorithm and Variations

In this section we discuss the important Harmonic algorithm [8] and possible
variations on it. In the next section we will discuss the specific variations on
Harmonic that we have used in this paper.

The fundamental idea of these algorithms is to first classify items by size,
and then pack an item according to its class (as opposed to letting the exact size
influence packing decisions). For the classification of items, we need to partition
the interval (0, 1] into subintervals. The standard Harmonic algorithm uses
n − 1 subintervals of the form (1/(i + 1), 1/i] for i = 1, . . . , n − 1 and one final
subinterval (0, 1/n]. Each bin will contain only items from one subinterval (type).
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Items in subinterval i are packed i to a bin for i = 1, . . . , n− 1 and the items in
interval n are packed in bins using Next Fit.

A disadvantage of Harmonic is that items of type 1, that is, the items larger
than 1/2, are packed one per bin, possibly wasting a lot of space in each single
bin. To avoid this large waste of space, later algorithms used two extra interval
endpoints, of the form Δ > 1/2 and 1 − Δ. Then, some small items can be
combined in one bin together with an item of size ∈ (1/2, Δ]. Items larger than
Δ are still packed one per bin as in Harmonic. These algorithms furthermore
use parameters αi (i = 3, . . . , n) which represent the fraction of bins allocated to
type i where the algorithm will reserve space for items ∈ (1/2, Δ]. The remaining
bins with items of type i still contain i items per bin.

Example. Modified Harmonic (MH) is defined by n = 38 (the number of
intervals) and Δ = 419/684.

α2 = 1
9 ; α3 = 1

12 ; α4 = α5 = 0;

αi =
37− i

37(i + 1)
, for 6 ≤ i ≤ 36;

α37 = α38 = 0.

The results of [10] imply that the asymptotic performance ratio of MH is at most
538
333 < 1.61562. (In the original definition, Δ was used to denote 1−Δ.)

In the current paper, we will use as interval endpoints the points of the form
b/i (as long as they are below 1) instead of 1/i, since items in (b/(i+1), b/i] can
be placed exactly i to a bin in an (online) bin of size b. Moreover, sometimes we
will also use points of the form Δ, b−Δ, 1− b/2 as interval endpoints, in order
to combine items from different types where they would otherwise waste much
space.

Note that for b ∈ [1, 2) we always have b/2 ≤ 1. We now consider an algorithm
A that uses n basic intervals (some might be subdivided further):

I1
A = (b/2, 1]

Ij
A = (b/(j + 1), b/j] j = 2, . . . , n− 1

In
A = (0, b/n]

In case Δ is used as an endpoint, the interval I1
A = (b/2, 1] is partitioned into

two subintervals, which will be denoted by I
Δ(2)
A = (b/2, Δ] and I

Δ(1)
A = (Δ, 1].

(Δ will always be chosen larger than b/2.) We will use two versions of algorithms,
that are determined by whether they use b − Δ or 1 − b/2 as an additional
endpoint. We denote the largest possible size of an item of the smallest type by
ε. This is b/n unless In

A is divided further into two subintervals.

Version 1. We use the endpoint b −Δ (but not the endpoint 1 − b/2). Let jΔ

be the integer such that b/(jΔ + 1) < b − Δ ≤ b/jΔ. Then IjΔ

A is partitioned
into two subintervals, which will be denoted by I

Δ(4)
A = (b/(jΔ + 1), b−Δ] and

I
Δ(3)
A = (b−Δ, b/jΔ].
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Version 2. We use the endpoint 1 − b/2 (but not the endpoint b −Δ). Let jΔ

be an integer such that b/(jΔ + 1) < 1− b/2 ≤ b/jΔ. In this version we always
take n ≥ jΔ.

If n ≥ jΔ + 1, then IjΔ

A is partitioned into two subintervals, which will be
denoted by I

Δ(4)
A = (b/(jΔ + 1), 1− b/2] and I

Δ(3)
A = (1− b/2, b/jΔ].

Otherwise nA = jΔ and In
A is partitioned into the two subintervals I

Δ(4)
A =

(0, 1− b/2] and I
Δ(3)
A = (1− b/2, b/n].

In both versions, the intervals are disjoint and cover (0, 1]. A assigns each
item a type depending on its size. An item of size s has type τA(s) where τA(s) =
j ⇔ s ∈ Ij

A. Note that either 2 ≤ j ≤ n (j �= jΔ) or j = Δ(i) for some 1 ≤ i ≤ 4.
Note that if we place an item from the interval I

Δ(2)
A in a bin, the amount of

space left over is at least b − Δ. If possible, we would like to use this space to
pack more items. To accomplish this, we assign each item a color, red or blue. A
attempts to pack red items with type I

Δ(2)
A items. For both versions, all items

of types 2, . . . , jΔ − 1 and Δ(k), k = 1, 2, 3 (where applicable) are blue. Other
items can be either red or blue.

To assign colors to items, the algorithm uses two sets of counters, ejΔ
, . . . , en

and sjΔ
, . . . , sn, all of which are initially zero. The counter sjΔ

counts the number
of bins for items of type Δ(4), and the counter si keeps track of the total number
of bins in which we packed items of type i for i = jΔ + 1, . . . , n. The counters ei

are defined analogously, but only count the number of bins containing red items
of type Δ(4) or i. These bins are also called red themselves.

For jΔ ≤ i ≤ n, A maintains the invariant ei = 	αisi
, i.e. the fraction of
bins with type i items that contain red items is approximately αi. Recall that
αi is defined only for jΔ ≤ i ≤ n. For each such interval, at least one item can
fit in a bin together with an item of size at most Δ in a bin of size b. Moreover,
for version 2 we combine only relatively small items with items of interval Δ(2),
so in most cases several items fit together with the Δ(2) item.

We now describe how blue and red items are packed. The packing of blue
items is simple. For i < n, the number of items with sizes in (b/(i+1), b/i] which
fit in a bin of size b is i. Blue items with such sizes are placed i in a bin, as in
the Harmonic algorithm. Note that the type of such an item is either i or Δ(k)
for some 1 ≤ k ≤ 4. Small items (type n) which are colored blue are packed into
separate bins using Next Fit, again as in the Harmonic algorithm.

For the red items, we consider the two versions of algorithms defined before
separately.

Version 1. One red item of type Δ(4) can be combined with an item of type
Δ(2). We define γjΔ

= 1. For jΔ < j < n, the number of red items we will
assign together with a type Δ(2) item is γj = 	j(b−Δ)/b
. For type n, we treat
the remaining space of b −Δ in bins containing an item of type Δ(2) as a bin,
and use Next Fit to place red items in such bins. Clearly we can fill at least
b−Δ− b/n of this space by small red items.
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Version 2. If n = jΔ, it means that we combine only the smallest interval with
items of type Δ(2). Then we can assign at least b − ε = 3b/2 − 1 to blue items
bins, and b−Δ− ε = 3b/2−Δ− 1 to red items bins. If n > jΔ, all the amounts
are defined as for version 1, except for γjΔ

= 	(b−Δ)/(1− b/2)
.

We explain more precisely the method by which red items are packed with
type Δ(2) items. When a bin is opened, it is assigned to a group. If ε = b/n, the
bin groups are named:

Δ(1), Δ(3), Δ(4), 2, 3, , . . . , jΔ − 1, jΔ + 1, . . . n; (1)
(Δ(2), i), for αi �= 0, jΔ ≤ i ≤ n; (2)
(Δ(2), ∗); (3)
(∗, i), for αi �= 0, jΔ ≤ i ≤ n; (4)

If ε = 1 − b/2, i.e. the smallest interval was partitioned, the bin groups are
named:

Δ(1), Δ(3), Δ(4), 2, 3, . . . , n− 1; (5)
(Δ(2), Δ(4)); (6)
(Δ(2), ∗); (7)
(∗, Δ(4)); (8)

Bins from groups in (1) and (5) contain only blue items of the type they is
named after. The closed bins all contain the maximum number of items they
can have (explained earlier).

If the smallest interval was not partitioned, then for jΔ ≤ i < n, a closed bin
in group (Δ(2), i) contains one type Δ(2) item and γi type i items, and a closed
bin in group (Δ(2), n) contains one type Δ(2) item and red items of total size at
least b−Δ− b/n. If the smallest interval was partitioned, a closed bin in group
(Δ(2), Δ(4)) contains red items of total size at least 3b/2 −Δ − 1. There is at
most one open bin in any of these groups.

The group (Δ(2), ∗) contains bins which hold a single blue item of type Δ(2).
These bins are all open, as we hope to add red items to them later.

The group (∗, j) contains bins which hold only red items of type j. Again,
these bins are all open, but only one has fewer than γj items if j < n. For j = n
only one bin can contain total size of less than b−Δ− ε of red items of the last
interval. We will try to add a type Δ(2) item to these bins if possible.

We call bins in the last two group classes ((3) and (4), or (7) and (8)) indeter-
minate. Essentially, the algorithm tries to minimize the number of indeterminate
bins, while maintaining all the aforementioned invariants. I.e. we try to place red
and type Δ(2) items together whenever possible; when this is not possible we
place them in indeterminate bins in hope that they can later be combined.

On arrival of an item, it gets the same color as the previous item of the same
type, if it can also fit into the same bin. Otherwise, we update the bins counter,
and according to the counters, decide which color it gets.
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3 Algorithms in This Paper

After describing the general framework, we now describe the specific algorithms
that we have designed. They are all instances of the general algorithm above.

Generalized Modified Harmonic (GMH). This algorithm has the same structure
as the regular Modified Harmonic, i.e. n = 38, and the same values of αi.
The only difference is that the variable Δ is adjusted to ensure that Δ ∈ (b/2, 1)
for b ∈ [1, 2).

Specifically, we let Δ grow linearly with the bin size until it reaches the value
1 for a bin size of 2, i.e. Δ = 419/684+265(b−1)/684. We applied this algorithm
on the interval [1, 6/5). This algorithm is of version 1 as we only modify Δ.

Convenient Modified Harmonic (CMH). On the interval [6/5, 4/3), we focus on
the items that could be packed together in one offline bin together with items of
type 1, that is, items that are just larger than b/2. This was done specifically to
handle the greedy input sequence, which starts with an item just larger than b/2
and repeatedly adds an item of the form b/ij + ε such that all items together fit
into a bin of size b.

Our algorithm is of version 1 and does the following. Let k = 	1/(1− b/2)
.
This means that the largest items that can be packed together with an item of
size b/2 in a single bin of size 1 are in the interval (1/(k + 1), 1/k] (possibly not
every size in this interval can be so packed). Let Δ = (k − 1)b/k. Note that in
the interval of b we consider, we always have k = 3 and hence Δ = 2b/3. Note
that b−Δ = b/k and therefore IΔ(3) = ∅.

Our choice of Δ ensures that items of type Δ(2), with sizes in (b/2, (k −
1)b/k], can be packed very well together with items of type k, with sizes in
(b/(k + 1), b/k], in our case this is (b/4, b/3]. In the discussed interval we have
b/2 + b/4 < 1, so in the optimal packing such items could also be together in
one bin. The choice of n = 38 is as in GMH and the values αi are chosen by
experimenting. The values we used are

α3 = 1
8 ; α4 = 1

10 ; α5 = 0;

αi =
37− i

37(i + 4)
, for 6 ≤ i ≤ 36;

α37 = α38 = 0.

Small Modified Harmonic (SMH). On the interval [4/3, 12/7 ≈ 1.7143), it be-
comes more important how to pack smaller items (relative to b). We define
Δ = 1, and n = 12. Thus IΔ(1) = ∅. Note that we use the second version of the
algorithm, which means that in marked contrast to all other previously defined
variations on Harmonic that the authors are aware of, we do not take α12 = 0,
that is, we pack some of the smallest items together with the large items.

We illustrate the reason. Consider a bin of size 3/2. Taking Δ = 1 leaves
a space of 1/2 in a bin. This space could be used to accommodate an item of
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size b/3 = 1/2. However, items of size in (b/4, b/3], when packed three to a bin,
occupy at least 3b/4 = 9/8 > 1. Considering an offline packing we can see that
such items do not fit together with an items of type Δ(2). Therefore there is no
reason to improve their packing which is already relatively good.

However, items that do fit together with type Δ(2) items do need to be
packed more carefully (partly red and partly blue), including the ones from the
last interval, since they can be combined in an offline packing. We determine
the largest item type that opt could pack together with an item in (b/2, 1]
(i.e. the smallest i such that b/i ≤ 1 − b/2). Larger items are packed according
to Harmonic, while a fraction of these smaller items are reserved to be packed
together with an item of type Δ(2), i.e. in (b/2, 1].

We explain how to fix the values αi for this algorithm in Section 4.
Tiny Modified Harmonic (TMH). On the interval [12/7, 2), it turns out that it
is crucial to pack the smallest items better than with Harmonic. All other items
are packed in their own bins according to Harmonic. We use the second version
of the algorithm. We use Δ = 1 (so IΔ(1) = ∅) and let n = jΔ.

In other words, we determine the number of intervals that we use in such a
way that 1− b/2 ∈ (b/(n + 1), b/n]. The smallest interval boundary of the form
b/i is just larger than 1− b/2 (or equal to it). This ensures that in the optimal
packing, only items of the smallest type could be packed together with large
items with size in (b/2, 1]. We use αjΔ

= (2b− 2)/(4− b).
It would be possible to improve very slightly using the algorithm SMH with

more intervals, but the number of intervals required grows without bound as b
approaches 2, and it becomes infeasible to calculate all the patterns.

4 Analysis

An algorithm for a given bin size b can be used without change for any bin size
c ≥ b, and will have the same performance ratio since for any given sequence, the
offline optimal packing and the cost of the algorithm remain unchanged. This
means that the function R∞

opt,b is monotonically decreasing in b. This property
allows us to give bounds on an interval by sampling a large but finite number of
points. An upper bound for the bin size b holds for b + γ for any γ > 0. A lower
bound for the bin size b holds for a bin size b− γ for any γ > 0.

Weighting functions. The type of algorithm described in Section 2 can be ana-
lyzed using the method of weighting systems developed in [11]. The full generality
of weighting systems is not required here, so we adopt a slightly different no-
tation than that used in [11], and restrict ourselves to a subclass of weighting
systems.

A weighting system for an algorithm A is a pair (WA, VA). WA and VA are
weighting functions which assign each item p a real number based on its size.
The weighting functions for an algorithm A are defined as follows.
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If ε = 1 − b/2, the only value of αi which is not zero is αjΔ . The weighting
functions are defined as follows.

Type of item p WA(p) VA(p)
Δ(1) 1 1
Δ(2) 1 0

k ∈ {2, 3, . . . , jΔ − 1} 1/k 1/k
Δ(3) 1/jΔ 1/jΔ

Δ(4)
p(1− αjΔ)

3b/2− 1−ΔαjΔ

p

3b/2− 1−ΔαjΔ

For the cases that ε = b/n we define the functions differently.

Type of item p WA(p) VA(p)
Δ(1) 1 1
Δ(2) 1 0

k ∈ {2, 3, . . . , jΔ − 1} 1/k 1/k
Δ(3) 1/jΔ 1/jΔ

Δ(4)
1− αj

γjΔ
αj

Δ + jΔ(1− αj
Δ)

1
γjΔ

αj
Δ + jΔ(1− αj

Δ)

k ∈ {jΔ + 1, . . . , n− 1} 1− αk

γkαk + k(1− αk)
1

γkαk + k(1− αk)

n
p(1− αn)

b− b/n−Δαn

p

b− b/n−Δαn

The following lemma follows directly from Lemma 4 of [11]:

Lemma 1. For all σ, we have

costA(σ) ≤ max

{∑
p∈σ

WA(p),
∑
p∈σ

VA(p)

}
+ O(1).

So the cost to A can be upper bounded by the weight of items in σ, and the
weight is independent of the order of items in σ.

We give a short intuitive explanation of the weight functions and Lemma 1:
Consider the final packing created by an algorithm A on some input σ. In this
final packing, let r be the number of bins containing red items, let b1 be the
number of type Δ(2) items, and let b2 be the number of bins containing blue
items of type other than Δ(2). The total number of bins is just max{r, b1} +
b2 = max{r + b2, b1 + b2}. We have chosen our weighting functions so that∑

p∈σ WA(p) = b1 + b2 + O(1) and
∑

p∈σ VA(p) = r + b2 + O(1). In both WA
and VA, the weight of a blue item of type other than Δ(2) is just the fraction
of a bin that it occupies. WA counts type Δ(2) items, but ignores red items.
VA ignores type Δ(2) items, but counts bins containing red items. For a formal
proof, we refer the reader to [11].

Let f be some function f : (0, 1] �→ R+.
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Definition 1. P(f) is the mathematical program: Maximize
∑n

x∈X f(x) subject
to
∑

x∈X x ≤ 1, over all finite sets of real numbers X. In an abuse of notation,
we also use P(f) to denote the value of this mathematical program.

Intuitively, given a weighting function f , P(f) upper bounds the amount of
weight that can be packed in a single bin. It is shown in [11] that the performance
ratio of A is upper bounded by max{P(WA),P(VA)}. The value of P is easily
determined using a branch and bound procedure very similar to those in [11, 4].

Choice of values αi for SMH. To choose the values of αi in the algorithm SMH
we use the following idea. We would like to balance the total weight of two
particular offline packings. The first offline packing contains one item of interval
Δ(2) and smaller items of type i (here the weight is maximized by considering
the weight function WA). The second offline packing contains only items of type
i, and we use VA to determine the maximum weight.

In order to balance these weights, we define the expansion of type i to be
the maximum ratio of weight to size of an item of type I. Let EV (i) be the
expansion according to VA and EW (i) be the expansion according to WA. We
would like to have

EV (i) = 1 + (1− b/2)EW (i).

This implies αi = (S − b/2)/(S − s + 1− b/2), where S is the minimal occupied
area in a closed bin containing blue items of type i and s is the minimal occupied
area by red items of interval I in a closed bin.

Note that this computation is not entirely accurate for all types, as it is not
always possible to fill a bin of size 1 or of size 1 − b/2 completely with items
of the largest expansion. However, the interval which affects the asymptotic
performance ratio the most is (0, ε].

Analysis of TMH. The simple structure of TMH allows an analytical solution.
For this algorithm, we do not need to solve mathematical programs, but can
instead calculate the asymptotic worst case performance directly, as follows.

For all types but the smallest and the largest, the weight of an item of size x
is at most x. The reason for this is that they are packed according to Harmonic,
and TMH can fit at least the same number of items per bin as opt can. To get
a bin of weight more than 1, there must be some items of the first or the last
type.

The upper bound of the last interval is 1− b/2, denoted by ε. Only items in
this interval can be packed together with a type Δ(2) item in one bin.

Recall that the algorithm uses a parameter α = αjΔ that determines how the
small items are packed. The algorithm maintains the invariant that a fraction α
of the bins containing small items are red and have room for a type Δ(2) item.
The total size of all the small items in such a bin is at least b−1− ε. The rest of
these bins are blue and contain a volume of at least b− ε. There are two cases.

Case 1. There is no item of type Δ(2). If TMH uses k bins to pack all items
of type Δ(4) (the last type), then αk bins are red and contain a minimum



Online Bin Packing with Resource Augmentation 33

volume of b − 1 − ε each; (1 − α)k bins contain a minimum total volume of
b − ε of small blue items each. Thus k bins contain a total volume of at least
αk(b− 1− ε) + (1− α)k(b− ε) = k(b− α− ε), in other words each bin contains
on average a volume of at least b − α − ε. The worst case is that all the items
are small. Since an offline bin can contain one unit of such items, this gives an
asymptotic performance ratio of 1/(b− α− ε). Note that this is consistent with
the definition of the function VA for this case.

Case 2. There is an item of type Δ(2). We are interested in the case that its
weight is 1, i.e. in the weights according to the function WA. The large item is
of size at least b/2. The weight in a bin that contains such an item is maximized
by filling up the bin with items of type Δ(4). The remaining space in the offline
bin is exactly 1− b/2. In this case, TMH only needs “to pay” for the blue bins.
It packs a volume of k(b−α− ε) using only (1−α)k blue bins. The total weight
according to WA is 1 + 1−α

b−α−ε (1− b/2).

Balancing the weights gives that the best choice is α = 2b−2
4−b and a ratio of

1/(b− α− ε) = (2b− 8)/(3b2 − 10b + 4).

5 Results

As mentioned in Section 4, we can determine valid upper and lower bounds on
the asymptotic performance ratio for this problem on any interval by sampling
a finite number of points. In fact, since we have given an analytical solution for
the algorithm TMH, it is not necessary to do any sampling for the upper bound
on the interval (12/7, 2].

On the remaining intervals, we used a computer program to solve the associ-
ated mathematical program P for many specific values of b (we sampled integer
multiples of 1

1000 ) and whichever algorithm is used for that value of b.
We also used a computer program to generate lower bounds for 1,000 values of

b between 1 and 2. There were some values of b where all lower bound sequences
that we used gave a worse lower bound than we had already found for some
higher value of b. However, a lower bound of c for a value b0 also implies a lower
bound of c for all values 1 ≤ b ≤ b0 as stated before. Therefore, whenever we
found a lower bound that was worse than one that was found for some higher
value of b, we instead use this higher bound. This explains the small intervals in
the graph where the lower bound is constant.

Our results are summarized in the two Figures 1 and 2. The horizontal axis
is the size of the online bin, and the vertical axis is the asymptotic performance
ratio. For comparison, we have included the graph of the bounded space upper
bound (which matches the bounded space lower bound).

It can be seen that for all bin sizes between 1 and 2, we have given substantial
improvements on the bounded space algorithm, which was the best known algo-
rithm for this problem so far. The lower bounds from [4] were also significantly
improved: for instance for b = 6/5, the lower bound was improved from less than
1.18 to above 1.34, and for b ≥ 3/2, the previous lower bound was less than 0.8.
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Fig. 1. The lower bound (lowest graph), upper bound (middle), and bounded space
bound (highest). Horizontal axis is size of online bin, vertical axis is asymptotic per-
formance ratio
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Fig. 2. The lower bound (lowest graph) and bounded space bound on [2, 5]. Axes as in
previous figure
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Abstract. A prevailing feature of mobile telephony systems is that the
location of a mobile user may be unknown. Therefore, when the system
is to establish a call between users, it may need to search, or page, all
the cells that it suspects the users may be located in, in order to find the
cells where the users currently reside. The search consumes expensive
wireless links which motivates search techniques that page as few cells
as possible.

We consider cellular systems with n cells and m mobile users roaming
among the cells. The location of the users is uncertain and is given by
m probability distribution vectors. Whenever the system needs to find
specific users, it conducts a search operation lasting at most d rounds.
In each round the system may check an arbitrary subset of cells to see
which users are located there. The problem of finding a single user is
known to be polynomially solvable. Whereas the problem of finding any
constant number of users (at least 2) in any fixed (constant) number of
rounds (at least two rounds) is known to be NP-hard. In this paper we
present a simple polynomial-time approximation scheme for this problem
with a constant number of rounds and a constant number of users. This
result improves an earlier e

e−1 ∼ 1.581977-approximation of Bar-Noy and
Malewicz.

1 Introduction

establishing wireless conference calls under delay constraints
problem (EWCC) is concerned with establishing a conference call involving
m + 1 users (from which one has a static position and the other m users have
dynamic locations) in a cellular network. The main property of a cellular net-
work is that the users are roaming. This places another step in the process of
establishment of the conference call. I.e., the system needs to find out to which
cell each user is connected at the moment. Using historical data the system has
a certain probability vector for each user that describes the probability that the
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system will find the user in each cell. We assume that each user is connected to
exactly one cell in the system and that the locations of the different users are
independent random variables.

In order to find a set of users the system may page a subset of cells. Each
cell in this subset returns a complete and accurate list of all the users that are
connected to it. We assume that the search lasts a short period and during
this period users do not move from one cell to another. The search strategy is
to page a certain subset of cells looking for the users that participate in the
conference call. After the system gets the answers from all the paged cells, it
decides whether it needs to continue to the next round (i.e., the search did not
find all the users) or it can stop the search (i.e., all the users have been already
found). In order to ensure a reasonable quality of service there is an upper bound
on the maximum number of rounds, denoted by d. We assume that the system
must find all the users within d rounds. Therefore, if the system does not find all
the participating users within the first d−1 rounds then in the last round it must
page all the cells it did not page before. In this paper we follow Bar-Noy and
Malewicz [1], and restrict our search strategy to oblivious algorithms, in which
the subset of cells that is paged in round i does not depend on the actual users
that the system found in round 1, 2 . . . , i − 1. However, if the search process is
completed at round i, the algorithm may stop. There are other search strategies
that are known as adaptive search strategies in which the subset of cells that is
paged in round i depends on the users that have been found so far. As noted in
[1] the two versions coincide for the special case of two rounds.

The goal of EWCC is to minimize the expected number of cells that the
system pages throughout the search.

If d = 1 then EWCC is trivial since the system must page all cells in the
first round, and the solution costs n. If m = 1 EWCC can be solved in poly-
nomial time using a simple dynamic programming [2, 3]. Bar-Noy and Malewicz
[1] showed that EWCC is NP-hard for any pair of fixed values of m, d such
that m, d ≥ 2. They also presented an approximation algorithm with perfor-
mance guarantee of e

e−1 ∼ 1.581977 for arbitrary values of d, m, and for the
special (NP-hard) case where d = m = 2 they showed that their approximation
algorithm is a 4

3 -approximation. Bar-Noy and Malewicz raised the open prob-
lem of the existence of a polynomial-time approximation scheme for EWCC. In
this paper we give the first positive answer for this question by presenting a
polynomial-time approximation scheme (PTAS) for the case of a fixed number
of rounds and a fixed number of users (m and d are arbitrary constant integer
values).

We now present a formal definition of EWCC. Denote the cell set by C =
{1, 2, . . . , n}, and the user set by U = {1, 2, . . . , m}. For i ∈ U and j ∈ C, denote
by pj

i the probability that user i is located at cell j. We assume that pj
i > 0, ∀i, j.

Given a positive matrix P = {pj
i}i,j and a bound d on the number of rounds, a

feasible solution is a partition C1, C2, . . . , Cd of C with the interpretation that in
round k the system pages the cells in the subset Ck, unless it has already found
all the users. A partition C1, C2, . . . , Cd induces probabilities (Pk)d

k=1 where Pk
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denotes the probability that the search will last for at least k rounds. I.e., Pk

is the probability that C1 ∪ C2 ∪ · · · ∪ Ck−1 does not contain U . Then, the cost
of C1, C2, . . . , Cd is

∑d
k=1 Pi|Ci|. The goal of EWCC is to find a partition of C

that minimizes its cost.
We now give a more detailed expression for the cost of a partition for the

special case of two rounds: C2 = C \ C1, denote pi(C1) =
∑

j∈C1
pj

i , which is
the probability to find user i in the first round. Therefore P2 = 1−∏i∈U pi(C1),
and the cost associated with the partition C1, C \C1 is exactly |C1|+(n−|C1|) ·(
1−∏i∈U pi(C1)

)
.

We start the paper with a PTAS for two rounds, and later extend it to an
arbitrary (constant) number of rounds d.

2 A PTAS for Two Rounds

In this section we present the main result of this paper; a polynomial time
approximation scheme for EWCC when d = 2. We fix an optimal solution OPT .
Our scheme is composed of two guessing steps. In these guessing steps we guess
certain information about the structure of OPT . Each guessing step can be
emulated via an exhaustive enumeration of all the possibilities for this piece of
information. So our algorithm runs all the possibilities, and among them chooses
the best solution achieved. In the analysis it is sufficient to consider the solution
obtained when we check the right guess.

Given OPT , denote by OPT1 the number of cells that OPT pages in the
first round, and by αi the probability that OPT does not find user i in the first
round. Therefore, the cost of OPT denoted by COST (OPT ) is COST (OPT ) =
OPT1 + (n−OPT1) ·

(
1−∏�∈U (1− α�)

)
.

Recall that m is a constant, and let ε be a value such that 0 < ε < 1
(m+1) . If

n ≤ m, then EWCC can be solved in a constant time via exhaustive enumera-
tion (since m is a constant), and therefore we assume that n > m. Denote the
probability intervals I0 = (0, ε

n2 ], and for 1 ≤ i ≤
⌈
log1+ε

(
n2

ε

)⌉
,

Ii =
( ε

n2 (1 + ε)i−1,
ε

n2 (1 + ε)i
]
.

Our first guessing step guesses for each � ∈ U , the index i(�) such that
α� ∈ Ii(�). The following lemma is trivial:

Lemma 1. The number of possibilities for the first guessing step is

O

([
log1+ε

(
n2

ε

)
+ 2
]m)

.

Therefore, performing an exhaustive enumeration for this guessing step can
be done in polynomial time. We continue to analyze the iteration of this step
in which we guess the right values that correspond to OPT . For all � ∈ U , we
denote the guess of α� by β� to be the upper bound of Ii(�); β� = ε

n2 (1 + ε)i(�).
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The next step is to scale up the probabilities as follows: for all i, j define qj
i =

pj
i/βi to be the scaled probability of i and j. We consider the vector Qj = (qj

i )i∈U

of the scaled probabilities that the users are in cell j. We remove all cells with
scaled probability larger than 1. Such cells cannot be paged in the second round,
and therefore must be paged in the first round. We further assign a type and
weight for each Qj according to the following way. Let qj

i be a maximum entry

in Qj , then we assign a weight wj = qj
i to Qj , and we define Q̃j =

(
qj
�/wj

)
�∈U

.

Note that Qj = wj · Q̃j . We define a set of intervals J as follows: J0 = (0, ε],
and for all k ≥ 1, Jk = (ε · (1 + ε)k−1, ε · (1 + ε)k], and J = {J0, J1, . . .}. For
each entry � in Q̃j , we find the interval from J that contains qj

�/wj . We assign
the type of Qj to be the following vector. For each �, compute a value t� such
that qj

�

wj ∈ Jt�
, then the type of Qj is the vector (t1, t2, . . . , tm).

Lemma 2. The number of possible types is O
([

log1+ε

( 1
ε

)
+ 2
]m).

Proof. To see this note that for all �, j, we have qj
�

wj ≤ 1. Therefore, it is enough
to use the first �log1+ε

( 1
ε

)
 + 1 intervals in J . The bound on the number of
possibilities of types that our instance contains follows.

Note that the bound on the number of types is a constant (for fixed values of
ε, m). Our second guessing step is to guess OPT1 (since the first round is never
skipped, this is an integer between 1 and n) and guess the number of cells from
each type that OPT pages in the second round (this also gives the number of
cells from each type that OPT pages in the first round).

Lemma 3. The number of possible guesses is bounded by O
(
n[log1+ε( 1

ε )+2]m
)
.

Proof. The number of cells from each type is an integer between 0 and OPT2 =
n−OPT1 ≤ n− 1. This guess also implies a guess for OPT2 and OPT1.

Note that the number of possibilities for this guessing step is polynomial (for
fixed values of ε, m).

Assume that for a type T = (t1, t2, . . . , tm), OPT has OPT2(T ) cells of type
T that are paged in the second round. We sort the cells of type T according
to their weight, and we assign the second round the OPT2(T ) cells (among
the cells of type T ) that have the least weight. We apply this procedure for
all the types T . We would like to ignore all invalid solutions. In order to be
valid, the probability bounds β� must be satisfied, i.e. the sum of (non-scaled)
probabilities must be in the interval Ii(�). We slightly relax this requirement
since a result of the scaling may shift the sum out of this interval. Instead, we
disregard probabilities such that their scaled probability is in the interval (0, ε],
and we allow the sum of the other (non-scaled) probabilities to reside in the
interval [0, β�(1 + ε)]. Equivalently, the sum of scaled and rounded vectors of
probability of chosen cells (ignoring the small components as explained above)
should be such that no component exceeds 1 + ε. For some guesses we obtain a
candidate solution. Among all candidate solutions we output the one whose cost
is minimized.
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Lemma 4. For a fixed number of users m, and for a constant ε > 0, the above
scheme takes polynomial time.

Proof. By Lemmas 1,2 and 3, the number of possibilities in the first step and
in the second step is polynomial. The time to compute the resulting candidate
solution for a single guess is clearly polynomial (i.e., finding a maximum value
for each cell and finding its weight is polynomial, and the rest is simply sorting
of the cells according to their weights), and the time to compute its cost is also
polynomial. Therefore, the scheme has polynomial running time.

3 Analysis

We analyze the iteration of the first guessing step in which the guessed values
of βi ∀i are the right guesses. We also assume that in the second guessing step
we guess the right value of OPT1 and the right number of cells of each type
that OPT pages in the second round. We analyze the cost of the corresponding
candidate solution.

Lemma 5. The right set of guesses leads to a candidate solution.

Proof. We have to show that for each user i, the sum of the probabilities (when
we ignore cells whose scaled probability is at most ε) of finding user i in the
second round is at most βi(1 + ε). For a type T = (t1, t2, . . . , tm) with ti ≥ 0,
OPT selects OPT2(T ) cells of type T with sum of weights that is at least the sum
of weights of the cells of type T that the candidate solution selects (note that
the weights are not changed in the process of partitioning the cells into types).
By definition of J , the probabilities of having user i in a pair of cells of type
T with the same weight, are within a multiplicative factor of 1 + ε. Therefore,
the contribution of type T cells to the probability that the candidate solution
finds i during the second round, is at most 1 + ε times the contribution of type
T cells to the probability that OPT finds i only during the second round. Since
the probability that OPT finds i only during the second round is αi ≤ βi, the
claim follows.

Lemma 6. Consider a user i, then the probability that the candidate solution
finds i during the second round (and not during the first round) is at most βi(1+
(m + 1)ε).

Proof. Consider a type T = (t1, t2, . . . , tm). First, assume that ti ≥ 1. By Lemma
5, the contribution of type T cells to the probability that the candidate solution
finds i during the second round, is at most 1 + ε times the contribution of type
T cells to the probability that OPT finds i only during the second round.

Next, consider a type T such that ti = 0. For such a type we define the leader
of T to be the first entry of the type vector that relates to the largest interval
(the interval which contains the point 1). There exists at least one such entry as
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in Q̃j there is at least one unit entry. Note that the sum of scaled probabilities
of finding user � of all the cells paged by OPT with a type such that � is the
leader, is at most 1 + ε. Therefore, the total contribution of scaled probabilities
of all the cells of any type T such that ti = 0 and � is acting as the leader of
T is at most (1 + ε)ε. Summing over all � (note that � �= i), we get an increase
of (m − 1)ε(1 + ε) caused by the types where ti = 0. In terms of the original
probabilities (i.e., for each cell we multiply its probability by βi) the types T
such that ti = 0 increase the probability of not finding user i in the first round
by (an additive factor of) (m− 1)(1 + ε)εβi.

To conclude (the two above arguments) the probability that the candidate
solution finds i during the second round (and not during the first round) is at
most βi(1 + ε) + βi(1 + ε)(m− 1)ε = βi(1 + ε)(1 + (m− 1)ε) ≤ βi(1 + (m + 1)ε)
(since ε < 1/(m + 1)).

We denote by S = {i ∈ U |βi = ε
n2 } the set of users with small probability

of being left for the second round, and by L = U \ S the set of users with large
probability of being left for the second round.

Theorem 1. The best candidate solution is a (1 + ε)(1 + 2ε)(1 + (m + 1)ε)-
approximated solution.

Proof. We will analyze the candidate solution that corresponds to the right
guesses (with respect to the information used by the solution OPT ). By Lemma
5, this is a candidate solution. The best candidate solution clearly outperforms
this particular candidate solution.

For a user i ∈ L, the probability that OPT does not find i in the first round
is αi, whereas by Lemma 6 the probability that the candidate solution does not
find i in the first round is at most βi(1 + (m + 1)ε). Since i ∈ L, we conclude
that αi ≥ βi

1+ε . Therefore, the probability that the candidate solution does not
find i in the first round is at most (1 + ε)(1 + (m + 1)ε)αi.

For a user i ∈ S, the probability that the candidate solution does not find
i in the first round is at most βi(1 + (m + 1)ε) = ε(1+(m+1)ε)

n2 ≤ 2ε
n2 , where the

inequality follows as ε < 1
(m+1) . Using the union bound we conclude that the

probability that the candidate solution does not find at least one of the users
in S is at most 2ε|S|

n2 ≤ 2εm
n2 ≤ 2ε

n , where the last inequality follows from the
assumption n > m. In case this event happens we assign an extra cost of n (for
the second round). This extra cost incurs an expected extra cost (an additive
factor) of at most 2ε

n · n = 2ε. Since OPT costs at least 1, we will conclude that
the users in S caused an increase of the approximation factor by a multiplicative
factor of at most 1 + 2ε.

We first assume that there is � ∈ U such that β�(1 + (m + 1)ε)(1 + ε) ≥
1. In this case α� ≥ 1

(1+(m+1)ε)(1+ε)2 , and therefore COST (OPT ) ≥ OPT1 +
(n− OPT1)α� ≥ nα� ≥ n

(1+(m+1)ε)(1+ε)2 ≥ n
(1+(m+1)ε)(1+ε)(1+2ε) . Note that the

returned solution costs at most n, and therefore in this case the returned solution
pays at most (1+(m+1)ε)(1+ε)(1+2ε)COST (OPT ). Therefore, we can assume
that for all �, β�(1 + (m + 1)ε)(1 + ε) < 1.
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We denote by τ = (1 + ε)(1 + (m + 1)ε). The cost of the candidate solution
is at most:

OPT1 + (n−OPT1) ·
(

1−
∏
�∈U

(1− β�(1 + (m + 1)ε))

)
(1)

≤ OPT1 + (n−OPT1) ·
(

1−
∏
�∈L

(1− β�(1 + (m + 1)ε))

)
+ 2ε (2)

≤ OPT1 + (n−OPT1) ·
(

1−
∏
�∈L

(1− τα�)

)
+ 2ε (3)

≤ OPT1 + (n−OPT1)τ ·
(

1−
∏
�∈L

(1− α�)

)
+ 2ε (4)

≤ (τ + 2ε)

[
OPT1 + (n−OPT1) ·

(
1−
∏
�∈L

(1− α�)

)]
(5)

≤ τ(1 + 2ε)

[
OPT1 + (n−OPT1) ·

(
1−
∏
�∈L

(1− α�)

)]
(6)

≤ τ(1 + 2ε)

[
OPT1 + (n−OPT1) ·

(
1−
∏
�∈U

(1− α�)

)]
(7)

= τ(1 + 2ε)COST (OPT ), (8)

where (1) follows from Lemma 6 and the monotonicity of the goal function
(increasing the probability of not finding a user in the first round only increases
the solution cost). (2) follows as explained above since the users in S incur an
additive increase of the expected cost by at most 2ε. (3) follows since for all
i ∈ L, α�(1 + ε) ≥ β�. (4) follows because given a set of |L| independent random
events the probability of their union is multiplied by at most τ if we multiply the
probability of each event in this set by τ . (5) and (6) follow by simple algebra
(and by OPT1 ≥ 1). (7) follows since we deal with probabilities, and for each
� ∈ S, 1−α� ≤ 1, and therefore

∏
�∈L(1−α�) ≥

∏
�∈U (1−α�). (8) follows from

the fact that we consider the right guesses on OPT .

By Theorem 1 we conclude that,

Corollary 1. The above scheme is a [1 + 6mε]-approximation for all ε > 0.

Proof. Since ε < 1
(m+1) and m ≥ 2 we get (1 + (m + 1)ε)(1 + ε)(1 + 2ε) ≤

(1 + (m + 1)ε)(1 + 4ε) ≤ 1 + (m + 9)ε ≤ 1 + 6mε.

By setting ε′ = ε
6m , and applying the above algorithm with ε′ instead of ε,

we get a 1+ε-approximation algorithm whose time complexity is polynomial for
any fixed value of ε. Therefore, we proved the main result:

Theorem 2. Problem EWCC with two rounds and a constant number of users
has a polynomial time approximation scheme.



A PTAS for Delay Minimization in Establishing Wireless Conference Calls 43

4 Extension of the PTAS to Any Fixed Number of
Rounds

In this section we show how the PTAS of the previous sections can be extended
to provide a PTAS for EWCC when the number of rounds d is an arbitrary
constant (the number of users is also a constant).

We fix an optimal solution OPT . Our scheme is again composed of two
guessing steps.

Given OPT , denote by OPTr the number of cells that OPT pages in the
r-th round, and by αr

i the probability for OPT to find user i exactly in the r-th
round (i.e., OPT does not find i in the first r − 1 rounds but finds i in the r-th
round). Denote by πr

i =
∑d

s=r αs
i the probability that OPT does not find i in

the first r − 1 rounds. Therefore, the cost of OPT denoted by COST (OPT ) is
COST (OPT ) =

∑d
r=1 OPTr · (1−

∏
i∈U (1− πr

i )).
Recall that m, d are constants, and let ε be a value such that 0 < ε <
1

(md+1) . If n ≤ md2, then EWCC can be solved in a constant time via exhaustive
enumeration (as m and d are constants), therefore we assume that n > md2.
Similarly to the d = 2 case we denote the probability intervals I0 = (0, ε

n2 ], and

for 1 ≤ i ≤
⌈
log1+ε

(
n2

ε

)⌉
, Ii =

(
ε

n2 (1 + ε)i−1, ε
n2 (1 + ε)i

]
.

Our first guessing step guesses for each � ∈ U and 1 ≤ r ≤ d, the index ir(�)
such that αr

� ∈ Iir(�). The following lemma is trivial:

Lemma 7. The number of possibilities for the first guessing step is

O

([
log1+ε

(
n2

ε

)
+ 2
]md
)

.

Therefore, performing an exhaustive enumeration for this guessing step can
be done in polynomial time. We continue to analyze the iteration of this step
in which we guess the right values that correspond to OPT . For all � ∈ U , we
denote the guess of αr

� by βr
� to be the upper bound of Iir(�); βr

� = ε
n2 (1+ε)ir(�).

The next step is to scale up the probabilities. Similarly in the d = 2 case we
define qj

i (r) = pj
i/(βr

i ) to be the scaled probability for user i to be found in cell
j in round r. The matrix of cell j is Qj = (qj

i (r))1≤i≤m,1≤r≤d. For every matrix,
each component larger than 1 is replaced by ∞ as this probability means that
such cells cannot be paged in the relevant round. We further assign a type to
each cell in the following way.

Let qj
i (r) be a maximum real entry in Qj (if all entries are ∞, we can skip

the current guess as it cannot lead to a valid solution), then we assign a weight
wj = qj

i (r) to Qj , and we define Q̃j =
(
qj
� (r)/wj

)
�∈U,1≤r≤d

. Note that Qj =

wj · Q̃j . We define a set of intervals J as follows: J0 = (0, ε], and for all k ≥ 1,
Jk = (ε ·(1+ε)k−1, ε ·(1+ε)k], and J = {J0, J1, . . .}. For each entry (�, r) in Q̃j ,
we find the interval from J that contains qj

� (r)/wj . We assign the type of Qj to
be the following matrix. For each (�, r) of real probability, compute a value t(�,r)
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such that qj
� (r)
wj ∈ Jt(�,r) . Entries of infinite probability are assigned (t(�,r) = ∞.

The type of Qj is the matrix (t(�,r))1≤�≤m,1≤r≤d.
Our second guessing step is to guess OPTr for r = 1, 2, . . . , d (since the first

round is never skipped, OPT1 is an integer between 1 and n, and the other values
are integers between 0 and n− 1) and guess the number of cells from each type
that OPT pages in each round.

Lemma 8. The number of possible types is O
([

log1+ε

( 1
ε

)
+ 3
]md
)
.

Proof. Each entry can have any of the values as in the two round case or infinity.

Lemma 9. The number of possible guesses is bounded by the value
O
(
(n + 1)d[log1+ε( 1

ε )+3]md)
.

Proof. For round 1 ≤ r ≤ d, the number of cells from each type is an integer
between 0 and OPTr ≤ n. Guessing the number of cells of each type in every
round implies a guess of the OPTr values.

Note that the number of possibilities for this guessing step is polynomial (for
fixed values of ε, m, d).

Assume that for a type T , OPT has OPTr(T ) cells of type T that are paged
in the r-th round. We sort the cells of type T according to their weight, and we
iterate the following: we initialize r = d and assign the r-th round OPTr(T ) cells
(among the cells of type T ) that have the least weight. We remove this set of
cells, we decrease r by 1 and repeat until no more cells of type T exist. We apply
this procedure for all the types T . We would like to ignore all invalid solutions.
In order to be valid, the probability bounds βr

� must be satisfied, i.e. the sum
of probabilities must be in the interval Iir(�). We slightly relax this requirement
since a result of the scaling may shift the sum out of this interval. Instead, we
disregard probabilities such that their scaled probability is in the interval (0, ε],
and we require that the sum over all rounds from r to d, of the sum of the other
(non-scaled) probabilities should reside in the interval [0,

∑d
s=r βs

� (1 + ε)]. For
some guesses we obtain a candidate solution. Among all candidate solutions we
output the one whose cost is minimized.

Lemma 10. For a fixed number of users m, a fixed number of rounds d, and
for a constant ε > 0, the above scheme takes a polynomial time.

Proof. By Lemmas 7,8 and 9, the number of possibilities in the first step and
in the second step is polynomial. The time to compute the resulting candidate
solution for a single guess is clearly polynomial (i.e., finding a maximum value
for each cell and finding its weight is polynomial, and the rest is simply sorting
of the cells according to their weights), and the time to compute its cost is also
polynomial. Therefore, the scheme takes a polynomial time.

We analyze the iteration of the first guessing step in which the guessed values
of βr

i ∀i, r are the right guesses. We also assume that in the second guessing step
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we guess the right values of OPTr for r = 1, 2, . . . , d and the right number of
cells of each type that OPT pages in each round. We analyze the cost of the
corresponding candidate solution.

Lemma 11. The right set of guesses leads to a candidate solution.

Proof. We have to show that for each user i and each round r, the sum of the
probabilities (when we ignore cells whose scaled probability is at most ε) of not
finding user i within the first r− 1 rounds is at most

∑d
s=r βs

i (1+ ε). For a type
T , OPT selects

∑d
s=r OPTs(T ) cells of type T with sum of weights that is at

least the sum of weights of the cells of type T that the candidate solution selects
(note that the weights are not changed in the process of partitioning the cells
into types). By definition of J , the probabilities of having user i in a pair of
cells of type T with the same weight, are within a multiplicative factor of 1 + ε.
Therefore, the contribution of type T cells to the probability that the candidate
solution does not find i during the first r − 1 rounds, is at most 1 + ε times the
contribution of type T cells to the probability that OPT does not find i during
the first r− 1 rounds. As the probability that OPT finds i only during the s-th
round is αs

i ≤ βs
i , the claim follows.

Lemma 12. Consider a user i and a round r, then the probability that the
candidate solution does not find i during the first r − 1 rounds is at most∑d

s=r βs
i (1 + (md + 1)ε).

Proof. Consider a type matrix T . A type with an ∞ entry for round s will have
zero cells for that round. Otherwise assume first that t(i,r) ≥ 1. By Lemma 11,
the contribution of type T cells to the probability that the candidate solution
does not find i during the first r−1 rounds, is at most 1+ε times the contribution
of type T cells to the probability that OPT does not find i during the first r− 1
rounds.

Next, consider a type T such that t(i,r) = 0. For such a type we define the
leader of T to be the first entry of the type matrix that relates to the largest real
interval (that contains the point 1). There exists at least one entry like this, as
there is at least one unit entry in Q̃j . Note that the sum of scaled probabilities
of finding user � in round r′ of all the cells paged by OPT in that round with a
type such that � is the leader, is at most 1 + ε. Therefore, the total contribution
of scaled probabilities of all the cells of any type T such that t(i,r′) = 0 and �, r′

is acting as the leader of T is at most (1 + ε)ε. Summing over all � and r′ (note
that we may exclude the case � = i, r′ = r), we get an increase of (md−1)ε(1+ε)
caused by the types where t(i,r) = 0. In terms of the original probabilities (i.e.,
for each cell and round s we multiply its probability by βs

i ) the types T such
that t(i,r) = 0 increase the probability of not finding user i in the first r − 1
rounds by at most (an additive factor of) (dm− 1)ε(1 + ε)

∑d
s=r βs

i .
To conclude (the two above arguments) the probability that the candidate

solution does not find i during the first r−1 rounds is at most
∑d

s=r βs
i (1+ ε)+∑d

s=r βs
i (md− 1)ε(1 + ε) =

∑d
s=r βs

i (1 + (md + 1)ε) (since ε < 1/(dm + 1)).

.
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Theorem 3. The best candidate solution is a (1+ε)2(1+(md+1)ε)-approximated
solution.

Proof. We will analyze the candidate solution that corresponds to the right
guesses (with respect to the information used by the solution OPT ). By Lemma
11, this is a candidate solution. The best candidate solution clearly outperforms
this particular candidate solution.

For a user i, the probability that OPT does not find i in the first r−1 rounds
is
∑d

s=r αs
i , whereas by Lemma 12 the probability that the candidate solution

does not find i in the first r−1 rounds is at most
∑d

s=r βs
i (1+(md+1)ε). For all

� ∈ U and for all s = 1, 2, . . . , d, αs
�(1+ε)+ ε

n2 ≥ βs
� holds. This gives

∑d
s=r αs

i ≥∑d
s=r βs

i

1+ε − ε(d−r+1)
n2 . Therefore, the probability that the candidate solution does

not find i in the first r−1 rounds is at most (1+ε)(1+(md+1)ε)
∑d

s=r αs
i +(1+

ε)(1+(md+1)ε) εd
n2 . Since the above term bounds a probability we conclude that

the probability that the candidate solution does not find i in the first r−1 rounds
is at most min{1, (1 + ε)(1 + (md + 1)ε)

∑d
s=r αs

i + (1 + ε)(1 + (md + 1)ε) εd
n2 }.

We denote by τ = (1 + ε)(1 + mdε). The cost of the candidate solution is at
most:

OPT1 +
d∑

r=2

OPTr ·
⎛
⎝1−

∏
�∈U

(
1−

d∑
s=r

βs
� (1 + mdε)

)+⎞⎠ (9)

≤ OPT1 +
d∑

r=2

OPTr ·
⎛
⎝1−

∏
�∈U

(
1− τ

(
d∑

s=r

αs
� +

εd

n2

))+⎞⎠ (10)

≤ OPT1 +
d∑

r=2

OPTr ·
⎛
⎝1−

∏
�∈U

(
1− τ

d∑
s=r

αs
�

)+

+
ετmd

n2

⎞
⎠ (11)

≤ OPT1 +
d∑

r=2

OPTr ·
⎛
⎝1−

∏
�∈U

(
1− τ

d∑
s=r

αs
�

)+⎞⎠+
ετmd2

n
(12)

≤ OPT1 +
d∑

r=2

OPTr ·
⎛
⎝1−

∏
�∈U

(
1− τ

d∑
s=r

αs
�

)+⎞⎠+ ετ (13)

≤ OPT1 +
d∑

r=2

OPTr · τ
(

1−
∏
�∈U

(
1−

d∑
s=r

αs
�

))
+ ετ (14)

≤ τ(1 + ε)

[
OPT1 +

d∑
r=2

OPTr ·
(

1−
∏
�∈U

(
1−

d∑
s=r

αs
�

))]
(15)

= τ(1 + ε)COST (OPT ), (16)

where (9) follows from Lemma 12 and the monotonicity of the goal function
(increasing the probability of not finding a user in the first rounds only increase
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the solution cost). (10) follows as explained above. (11) follows by simple algebra.
(12) follows since OPTr ≤ n, ∀n. (13) follows from the assumption n ≥ md2.
(14) follows because given a set of |L| independent random events the probability
of their union is multiplied by at most τ if we multiply the probability of each
event in this set by τ . (15) follow by simple algebra (and by OPT1 ≥ 1). (16)
follows from considering the right guesses on OPT .

Similar to the d = 2 case, we establish the following theorem:

Theorem 4. Problem EWCC with a constant number of rounds and a constant
number of users has a polynomial time approximation scheme.
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Abstract. We consider two- and three-dimensional bin packing prob-
lems where 90◦ rotations are allowed. We improve all known asymptotic
performance bounds for these problems. In particular, we show how to
combine ideas from strip packing and two-dimensional bin packing to
give a new algorithm for the three-dimensional strip packing problem
where boxes can only be rotated sideways. We propose to call this prob-
lem ‘This side up’. Our algorithm has an asymptotic performance bound
of 9/4.

1 Introduction

The study of multi-dimensional packing problems gained an increasing interest
in the last few years [1, 2, 4, 7]. A main trend was the study of offline and online
packing algorithms for oriented items which are rectangles or boxes. Given a
large supply of bins which are squares, or cubes, or a strip of infinite height,
the goal is to pack items efficiently, without rotation. This problem clearly has
applications; however, in many applications, there is no reason to exclude the
option of changing the orientation of items before assignment. Some applications
may allow rotation only in certain directions.

In this paper we study several rotatable packing problems. The same problem
is also known as “packing of non-oriented items” [5]. All packing problems involve
an input which is a set of items. In “strip packing” problems, the goal is to pack
the items into a strip of unlimited height, so as to minimize the maximum height
ever used. In “bin packing” problems, the goal is to use a minimum number of
bins for the packing. The items always need to be packed without overlap. The
exact structure of the strip, bins and items depends on the specific problem.

The two-dimensional bin packing problem with rotations is defined as follows.
The bins are unit squares and the items are rectangles that may be rotated by
90◦. In the strip packing version, the strip is two-dimensional, with a base of
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width one and infinite height. In the three-dimensional bin packing problem
with rotations, the bins are three-dimensional cubes, and the items are non-
oriented three-dimensional boxes, rotatable by 90◦ in all possible directions. In
the strip packing version we pack these items into a three-dimensional strip with
a base which is a unit square, and again, infinite height.

In three dimensions, we can also consider the case of items that may be
rotated so that the width and length are interchanged, however the height is
fixed. We call this problem “This Side up”, as it has applications in packing of
fragile objects, where a certain face of the box must be placed on top. This three-
dimensional problem, as the rotatable problems has two versions: packing into a
three-dimensional strip (also called “the z-oriented 3-D packing problem” [10])
and packing into three-dimensional bins.

The standard measure of algorithm quality for box packing is the asymptotic
performance ratio, which we now define. For a given input sequence σ, let A(σ)
be the number of bins used by algorithm A on σ. Let OPT(σ) be the minimum
possible number of bins used to pack items in σ. The asymptotic performance
ratio for an algorithm A is defined to be

R∞
A = lim sup

n→∞
sup

σ

{
A(σ)

OPT(σ)

∣∣∣∣∣OPT(σ) = n

}
.

Previous Results: The oriented packing problems have been widely studied.
The best result for two-dimensional packing into bins is 1.691, due to Caprara
[2]. See references in [1, 2, 4, 7] for further results on oriented packing problems.
The square and cube packing (into bins) problems are special cases of rotatable
packing. An APTAS for these problems was given in [1] and independently in
[4].

Although the possibility of allowing rotations was already mentioned in [3],
there has been relatively little research into this subject from a worst-case
perspective until recently. Fujita and Hada [8] considered the two-dimensional
bin packing problem with rotations. They presented two online algorithms and
claimed asymptotic performance ratios of at most 2.6112 and 2.56411. Epstein [6]
showed that the first algorithm instead has an asymptotic performance ratio of
at most 2.63889 and questioned the validity of the second algorithm. She also
presented an online algorithm with asymptotic performance ratio slightly below
2.45.

Recently, Miyazawa and Wakabayashi [11] presented an offline approximation
algorithm for two-dimensional bin packing with rotations with an asymptotic
performance bound of 2.64. It is most likely that the extended abstract [6] as
well as the earlier paper [8] were unknown to those authors.

The paper [11] also considers several other problems with rotatable items
and gives an upper bound of 2.64 for the This Side Up problem which was also
considered in [9, 10]. The paper [10] demonstrates a reduction from the general
three-dimensional strip packing problem with rotations to the This Side Up
problem in a strip, but this reduction does not hold for the case considered in
this paper, where the three-dimensional strip always has a square base of side 1.
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Our Results. We improve upon the best known results for all the above prob-
lems.

– An algorithm of asymptotic performance ratio 3/2 = 1.5 for two-dimensional
rotatable strip packing. This improves on the bound 1.613 in [11].

– An algorithm of asymptotic performance ratio 9/4 = 2.25 for two-dimensio-
nal rotatable packing into bins. This improves on the on-line algorithm in [6]
that has an asymptotic performance ratio of slightly less than 2.45. Although
this algorithm basically consists of many (easy) cases, it has the advantage
that it can easily be adapted to the more complex problems listed below.

– An algorithm which combines methods of the two above algorithms and has
asymptotic performance ratio 9/4 = 2.25 for the “This side up” problem in
a strip. This is the main result of the paper. This improves the bound of [11]
which is 2.64.

– An adaptation of the previous algorithm to packing of rotatable items in a
three-dimensional strip, with the same asymptotic performance ratio 9/4 =
2.25. This improves the bound of [11] which is 2.76.

– A simple adaptation of the two previous algorithms for the bin packing ver-
sions of these problems, with asymptotic performance ratio 9/2 = 4.5. This
improves the bound of [11] for three-dimensional bin packing of rotatable
items, which is 4.89.

2 Two-Dimensional Strip Packing

We assume that all items have height and width at most 1. The strip has width
1 and unbounded height. As a subroutine for our algorithm, we use the well-
known algorithm First Fit Decreasing Height (FFDH). The following theorem
was proved by Coffman et al. in 1980 [3].

Theorem 1. Let L be any list of rectangles ordered by non-increasing height
such that no rectangle in L has width exceeding 1/m for some m ≥ 2. Then
FFDH(L) ≤ (1+1/m)A(L)+1, where A(L) is the total area of the items in L.

Items that have width and height greater than 1/2 are called big. These items
are rotated so that their width is not smaller than their height. For items that
have only one dimension greater than 1/2, we rotate them so that this dimension
is the height.

1. The big items are stacked at the bottom of the strip, in order of decreasing
width and aligned with the left side of the strip. Denote the height needed
for this packing by h1.

2. Denote the height at which the first item of width at most 2/3 is packed
by h′

1 (0 ≤ h′
1 ≤ h1). If h′

1 < h1, define a substrip of width 1/3 that starts
at height h′

1, at the right side of the strip. Pack items that have widths in
(0, 1/6] inside this strip using FFDH, until all these items are packed or until
the next item to be packed would be placed (partially) above height h1.
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3. If all items that have width in (0, 1/6] have now been packed:
(a) Stack items of widths in (1/6, 1/2] at the right side of the bin, on top

of the substrip from step 2. Place these items in order of increasing
width. Each item is placed as low as possible, at the extreme right of
the bin, under the constraint that it does not overlap with previously
placed items. Do this until all such items are packed or the next item to
be packed would be placed (partially) above height h1.

(b) Place the unpacked items of width in (1/3, 1/2] in two stacks starting at
height h1 by each time adding an item to the shortest stack. Pack the
unpacked items of width in (1/6, 1/3] using FFDH.

4. Else, place all remaining items above height h1 using the algorithm FFDH.

Theorem 2. For this algorithm, we have alg1(L) ≤ 3
2opt(L)+3 for any input

list L.

Proof. The proof consists of showing that at all heights of the packing apart
from a total height of at least 3, a width of 2/3 is covered by items. This implies
immediately that the height of the optimal packing is at least 2/3 of the height
of the packing of alg1. Details are omitted in this extended abstract. �

It is straightforward to see that the complexity of our algorithm is O(n log n),
where n is the number of items to be packed, since apart from sorting by width
or height all the steps in the algorithm take linear time. We conjecture that the
complexity of any algorithm with an approximation ratio strictly below 3/2 is
substantially higher than O(n log n).

3 Two-Dimensional Bin Packing

We apply a first partition of items to types in the following way. We rotate
all items such that the length is at least as large as the width. We call this
the standard orientation, and the other one the reversed orientation. The one-
dimensional intervals we use in the initial partition are

– (2/3, 1] (type 0)
– (1/2, 2/3] (type 1)
– (1/(i + 1), 1/i] for i = 2, . . . , 8 (type i)
– (0, 1/9] (type 9)

A two-dimensional item is of type (i, j) if its width is of type i and its length
is of type j. Clearly i ≥ j due to the orientation we defined. In some cases,
we will use a finer classification for type 1. We let type 1a = (1/2, 11/20], type
1b = (11/20, 3/5] and type 1c = (3/5, 2/3].

There are four types which we will call large. We will begin by defining their
packing. Each such type is packed independently of the other ones. We pack items
of types (1, 1), (1, 0) and (0, 0) one per bin, always in the left bottom corner of
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the bin and in standard orientation. The items of type (2, 1) are further classified
according to their length (largest dimension). Items of type (2, 1a) are packed
two per bin, both in reverse orientation, touching the same edge of the bin and
each other, with one of them in the left bottom corner of the bin. The same
holds for items of type (2, 1b) and (2, 1c) (but the items of these three subtypes
are not packed together in any bin).

There are also four medium types. Items of type (2, 2) are packed four per
bin (the bin is first partitioned into four identical sub-bins). Items of type (i, 0)
are packed i per bin for i = 2, 3, 4.

After the packing of the large and medium types is completed, smaller items
are added. They are first added into bins which contain large items. If some
items remain unpacked after those bins are considered, they are packed into
empty bins.

Bins containing items of the types (0, 0), (2, 2), (2, 0), (3, 0) and (4, 0) do not
receive smaller items. We note that all these bins are packed so that a fraction
of at least 4/9 of their area is occupied, except possibly the last bin for each of
the last four types. This follows from the types and the amounts of items per
bin.

The performance bound of 9/4 follows from one of the two following reasons.

1. If no new bins are opened for smaller items, we use a weighting function for
the analysis. Those functions are usually useful in analyzing on-line algo-
rithms. Here we use it to analyze an offline algorithm.

2. If at least one bin was opened for smaller items, we use an area based analysis.
We show that all bins except a constant number have items of total area of
at least 4/9. Then we get OPT ≥ W ≥ (4/9)(ALG2 − c) which implies the
performance ratio.

Case 1. The weighting function is defined in the following way. Small items get
weight 0.

Type (0, 0) (1, 0) (1, 1) (2, 1) (2, 0) (2, 2) (3, 0) (4, 0)
Weight 1 1 1 1/2 1/2 1/4 1/3 1/4

The following claim is immediate from the definitions.

Claim. All bins packed by our algorithm with large items, except possibly the
last one for each (sub)type, contain a weight of 1.

Claim. A bin can contain at most nine items of both width and length larger
than 1/4.

Proof. See [7]. �

It follows from the same result that a bin can contain at most twenty-five
items of both width and length larger than 1/6.

Claim. A bin can contain at most 9/4 of weight.
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Proof. Consider a bin with a certain amount of weight. We may assume there is
no item of type (0, 0) or (1, 0), because the smaller type (1, 1) also has weight 1,
and also no item of type (2, 0) because (2, 1) gives the same weight.

We will use Claim 3 to determine the highest possible weight in a bin by
expressing all items as multiples of items of width and length just larger than
1/4 or 1/6. For instance, by cutting a (1,1) item halfway both horizontally and
vertically, it can be seen that other items of ‘worth’ at most 5 items of width
and length just larger than 1/4 can be placed with it in one bin (otherwise this
cutting would create a packing with more than 9 such items, contradicting Claim
3).

An overview can be found in the following table. Here the heading ‘items
> 1/4’ means ‘number of items of length and width more than 1/4 that items
of this type contain’, etc.

Type items > 1/4 items > 1/6 weight weight per
item > 1/6

(1, 1) 4 9 1 1/9
(2, 1) 2 6 1/2 1/12
(2, 2) 1 4 1/4 1/16
(3, 0) 2 4 1/3 1/12
(4, 0) 0 4 1/4 1/16

If there is no item of type (1, 1), then by the last column, the weight per
‘virtual’ item of width and length larger than 1/6 is at most 1/12 which gives
total weight of at most 25/12 < 9/4.

Otherwise, by the second column and Claim 3, at most 2 items of type (2, 1)
or (3, 0) can be in the bin together with the item of type (1, 1). To get maximum
weight, we should maximize the number of virtual items that have weight 1/12
per item. We can have at most 12 such virtual items because there can be at most
2 items that cover 6 of them. This leaves at most 4 virtual items with weight
per item 1/16, giving additional weight of 1/4. The total weight therefore is at
most 1 (from the largest item) +1 (from the (2, 1) items) +1/4 = 9/4. �

Case 2. It is left to show how small items are packed to keep a 4/9 fraction of
each bin occupied (except for a constant number of bins). Each bin will contain
items of a given small type or set of types. For each type or set of types, we need
to show how they are packed in the following three cases.

A. A bin that already contains a (1, 0) item, or two (2, 1) items.
B. A bin that already contains a (1, 1) item.
C. An empty bin.

Consider the area left for further packing in the three cases. See Figure 1.
For many small types, summarized in Table 1, the packing of the small items
does not depend on the exact size of the large items that they are packed with.

In type A bins, there is a strip of width 1/3 and length 1 that does not contain
any items. Such a bin already contains an area of at least 1/3.
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A B C

Fig. 1. Unused areas in bins of types A, B and C. Small items are packed here

Table 1. All types that are combined on a single line of the table are packed together,
except the types (i, j) for 3 ≤ j ≤ i ≤ 5 in empty bins (type C bins) and the (9, i)
types. For the (9, i) types, shelves of length 1/i and width 1/3 are created in type A
and B bins. They are all filled to a length of 1/(i + 1) and a width of 2/9. In bins of
type B, one extra shelf is created in the smaller part of the L-shape. In bins of type C,
shelves of width 1 are created; they are filled to a width of 8/9

A B C
Type items area = 1/3+ items area = 1/4+ items area

(3, 1) 1 1/8 1 + 1 1/4 4 1/2
(3, 2) 2 1/6 2 + 1 1/4 6 1/2
(4, 2) 2 2/15 2 + 1 1/5 8 8/15
(i, j) 3 ≤ j ≤ i ≤ 4 3 3/25 3 + 2 1/5 ij 9/16
(5, j) j = 3, 4, 5 5 5/36 5 + 3 2/9 5j 5/8
(i, 1) i = 6, 7, 8 2 1/9 2 + 2 2/9 8 4/9
(i, 2) i = 6, 7, 8 4 4/27 4 + 2 2/9 12 12/27
(i, 3) i = 6, 7, 8 6 1/6 6 + 4 5/18 18 1/2
(i, j) i = 6, 7, 8, j = 4, 5 8 4/27 8 + 4 2/9 24 4/9
(i, j) 6 ≤ j ≤ i ≤ 8 12 12/81 12 + 8 20/81 36 4/9

Type shelves area = 1/3+ shelves area = 1/4+ shelves area
(9, i) i = 2, . . . , 8 i 2/3 · 2/9 i + 1 2/9 i 8/9 · 2/3

In type B bins, the area outside of a square of 2/3 by 2/3 in the left bot-
tom corner does not contain any items. We partition this L-shaped area in two
rectangles, one of dimensions 1 and 1/3 and the other of dimensions 2/3 and
1/3. The orientation is not important since rotations are allowed. We pack some
number of small items in the larger rectangle and some number in the smaller
rectangle; the numbers are written as a sum in the ‘items’ column for type B.
These bins already contain an area of at least 1/4.

In type C bins, we use the so-called side-by-side packing [6] to pack items.
I.e., for type (i, j) items, we place ij of these items in an i by j grid at the
bottom of the bin, and then (when possible) add some extra items in reverse
orientation at the top of the bin.
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Table 2. The variable w in the Condition column refers to the width of the big item(s)
in the current bin of type A or B. Recall that the width is the smallest size of an item.
The type (4, 1)a contains items of width in the interval (9/40, 1/4]. The type (i, 0)a

(i = 6, 7, 8) contains items of width in (2/3, i−1
i

], the type (i, 0)b contains items of
width in ( i−1

i
, 1]. The types (i, 0) (i = 4, . . . , 8) are packed separately (in type B bins:

both subtypes separately), the types (9, 0) and (9, 1) are packed together in type A
and C bins. For the (9, 1) items in type B bins, we use two shelves of length 1 and 2/3,
both of width 1/3. In both shelves, at least a width of 2/9 and length of 1/2 will be
occupied

Type Bins Condition items area
(4, 1) A subtype (4, 1)a 1 1/3 + 9/80

w > 11/20 1 11/30 + 1/10
w ≤ 11/20 2 1/3 + 2/10

B 1 + 1 1/4 + 1/5
C 5 1/2

(5, 0) A 1 1/3 + 1/9
B w > 3/5 1 + 0 9/25 + 1/9

w ≤ 3/5 2 + 0 1/4 + 2/9
C 5 5/9

(5, 1) A w > 3/5 1 2/5 + 1/12
w ≤ 3/5 2 1/3 + 1/6

B w > 3/5 1 + 1 9/25 + 1/6
w ≤ 3/5 2 + 1 1/4 + 1/4

C 6 1/2
(5, 2) A 2 1/3 + 1/9

B w > 3/5 2 + 1 9/25 + 3/18
w ≤ 3/5 4 + 1 1/4 + 5/18

C 10 5/9
(i, 0), i = 6, 7, 8 A 2 1/3 + 4/(3i + 3)

B subtype (i, 0)a 2 + 1 1/4 + 2/(i + 1)
subtype (i, 0)b 2 + 0 1/4 + 2 i−1

i
1

i+1
C i 2/3 · i/(i + 1)

Type Bins Condition shelves area
(9, i), i = 0, 1 A 1 1/3 + 2/9 · 1/2
(9, 0) B w > 11/20 1 121

400 + 2
3

2
9

w ≤ 11/20 1 1/4 + ( 9
20 − 1

9 )
(9, 1) B 2 1/4 + 4/9 · 1/2
(9, i), i = 0, 1 C 1 1/2 · 8/9

Table 2 contains the items that are slightly more complicated to pack, at
least in Type A and Type B bins. Here it is usually important what the exact
width of the large items is. This is the reason that we classified type (2,1) items
further: we can now be assured that if one of them has e.g. width w ≤ 3/5, the
other one has this as well. (Note: to keep the analysis uniform, for these items
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we let the width be the largest size. The width of a pair can be taken arbitrarily
as either the width of the first or the second item, due to our classification.)

In type A bins, we will now sometimes (where possible) use a strip of width
2/5 or 9/20 to pack small items, e.g. for type (4, 1). In type B bins, the L-shaped
free area will sometimes also be partitioned such that one strip of width 2/5 or
9/20 (and length 1) is created. For items of type (6, 0), (7, 0) and (8, 0), the
width of the largest strip depends on the width of the small items packed in
there. The area that is already in a type A or B bin is of course different if we
put restrictions on the width of the large items; it is given by the first term of
the sum in the ‘area’ column.

Finally, there is one type that still remains to be packed. This type, (9, 9), is
described below.

Type (9, 9). We show how to pack these items into square sub-bins of width and
length 1/3 so that inside each such sub-bin at least 4/9 of its area is occupied.
We begin by showing that this is a dense enough packing in all three cases.

A. We can create three sub-bins. We get a total area of 1/3+12/81 = 13/27 =
4/9.

B. The item already packed in this bin has length and width no larger than
2/3. Therefore we can create five sub-bins. The total occupied area would be
1/4 + 5 · 4/81 = 161/324 > 4/9.

C. We create nine sub-bins and get a total area of 4/9.

Next we explain the packing into sub-bins. We use Next Fit Decreasing
Length (NFDL) to pack items into these sub-bins. All items are rotated such
that their length is no smaller than their width, and then sorted by decreasing
length. Then, the items are packed into levels using Next Fit, where the length
of each level is the length of the first item placed in it. When the next item does
not fit in the current level anymore, a new level is started, if necessary in a new
sub-bin.

Since all items have width at most 1/9, we find that each shelf is filled to a
width of at least 2/9. Denote the length of shelf i by Hi. Let k be the number
of shelves in the current bin. The first item that does not fit has length Hk+1.
All items in shelf i have length at least Hi+1.

Then for each sub-bin except the last, the packed area is at least 2/9(H2 +
... + Hk+1) > 2/9(1/3 − H1) > 4/81. This is a 4/9 fraction of the area of the
sub-bin which is 1/9.

Theorem 3. For any input list L, we have alg2(L) ≤ 9/4 · opt(L) + 41.

Proof. If no new bins are opened for small items, we have from Claim 3 that
there are at most 7 bins with weight less than 1 (this cannot occur for the
types (0, 0), (1, 0) and (1, 1)). Combining this with Claim 3 gives alg2(L) ≤
9/4 · opt(L) + 7.

If there are new bins opened for small items, then almost all bins contain an
area of at least 4/9. By the above analysis, this holds in this case for all bins
that contain small items, except possibly the last such bin for each type that
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is packed separately. Note that it is also possible that we run out of a certain
small type while we are packing a bin of type A, in this case this bin is not used
further and has a bad area guarantee. Counting the number of types packed
separately, there are 21 such types in Table 1 and 12 in Table 2. (Note that
the type (4, 1) can only cause a single bin with a low area guarantee, because
this cannot happen for subtype (4, 1)a or for a bin of type A with w > 11/20.)
Finally there is the type (9, 9).

Moreover, there can be at most 7 bins with large items that have no small
items and area less than 4/9: these are the bins that had weight less than 1 after
packing the large items. Since the total area of the items is a lower bound on the
optimal number of bins required to pack them, we find in this case alg2(L) ≤
9/4 · opt(L) + 41.

4 This Side Up

We now show how to use the algorithm in the previous section to get a 9/4-
approximation algorithm for the This Side Up problem. Naively, one might think
that one could simply group items of similar height and pack each group using the
algorithm from the previous section (ignoring the height of the items). However,
the problem with this is that some groups might contain only large items and
other groups only small items. In this case, the groups with large items will have
poor volume guarantees, and we will not get a good approximation ratio.

We therefore have to be more careful. Our algorithm works as follows. All
items are classified into types as in the previous section, where the height of the
items is (for now) ignored. We then begin by packing the large items. The (0, 0)
items are stacked in some way, nothing is placed next to this stack.

For the (1, 0), (1, 1) and (2, 1) items, we classify them further along a di-
mension that has type 1, using the types 1a, 1b and 1c that were defined at
the start of section 2. Thus we have in total nine subtypes (the (1, 1) items are
only classified further along their width (smallest size)). We sort the items by
subtype, items of subtypes of (2, 1) are further sorted by decreasing height.

For each subtype, the items are stacked in the strip so that one corner of each
item is directly above a designated corner of the base of the strip, and all items
are oriented in the same way. Pairs of (2, 1) items are considered as a single (1, 0)
item in this step, where the width is one of the lengths (largest sizes) of the pair.
Thus we have six stacks of items on top of each other: three for the (1, 1) items
and one each for items of types (1x, 0) and (2, 1x) for x = a, b, c. Here we rotate
the (2, 1) items such that their length is oriented along the width of the (1, 0)
items, and a free strip is left next to these items along one side of the main strip.

If we view any one of these stacks from above, it leaves either an L-shaped
area or one strip. We can now start using this extra volume for the small items,
using the six stacks one by one. The small items are also packed per type. Within
each type, the items are sorted in order of decreasing height. Then the items are
packed in levels, where each level is packed as in section 3 next to the current
stack. The height of a level is the height of the first item packed in it.
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Because this stack contains items of only one large subtype (by considering
pairs of (2, 1) items as (1, 0) items), and the levels contain items from one small
type, the packing uses the same unique method on all levels that are used for
this small type. It is for this reason that we can ignore the single large items
in the stack and only care about the height of the stack. If we did not use
this distinction into subtypes for the large items, we might need to change the
packing method many times, and we would leave much vertical space unused.

We continue creating levels until we run out of items for this small type or
the next small item does not fit next to the current stack (its height would be
higher than the height of the stack). In this last case, the remaining items of
this type are packed next to the next stack of large items. I.e., the next level for
this type is not created immediately above the previous level, but instead at the
height where the next stack starts. Also, the packing method might be changed
at this point.

Finally, if all six stacks are used in this way, or the small items are all packed,
we pack the remaining large and small items according to the methods for pack-
ing items into empty bins. That is, for each (large or small) type, the items are
sorted according to height and then packed in order of decreasing height using
the methods from section 3, using as many levels as necessary.

Analysis. We begin by making a general remark. Whenever items are packed
into levels in order of decreasing height, some height in each level is lost because
the first item on the level determines the height of the level, and the next items
might have smaller height. However, if we denote the heights of the levels by
H1, . . . , Hk, we have that all items on level i have height at least Hi+1. To see
how much area is occupied, we can move all items from each level i to level i+1.
Then level i+1 is completely covered by items for each i, and only level 1 is left
empty. This implies that when we consider the height of the entire packing for
these items, at most a height of H1 does not contain any items.

We have two cases in our analysis. First of all, it can be seen that if all the
small items fit next to the six created stacks, we can ignore the small items in
the analysis because they do not add to the total height used. In this case, we
can use the weighting technique from section 3.

The weight of an item is now defined as the vertical size divided by the
number of times that the ’horizontal item’ fits in a square. To give a bound on
the performance ratio, we introduce a new concept which is the weight density.
This is the weight of an item per unit of vertical dimension, i.e. it is the weight
of the two-dimensional item that we get when we ignore the vertical dimension
of an item. We will examine the weight densities at arbitrary horizontal planes
through the packings of our algorithm and of the optimal packing.

We find that for each large (sub)type, if it is packed in levels between heights
h1 and h2, the weight density is 1 at all heights h ∈ [h1, h2] apart from a total
height of at most 1. For (0, 0) and the subtypes of (1, 1) and (1, 0), there is even
a weight density of 1 at the entire height of their stacks, because all these items
are placed directly on top of each other. In the optimal solution, according to
Claim 3, there can not be a weight density of more than 9/4 at any height. Since
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we use seven types that do not have a weight of 1 everywhere (four medium
types and the three subtypes of (2, 1)), we find that alg3(L) ≤ 9/4 ·opt(L)+7.

Now suppose that some small items need to be packed above the large items.
Consider some large (sub)type (one stack) and a single small type t. Suppose
all items from this type are placed next to this large subtype, between heights
ht and h′

t. Since the small items are sorted by decreasing height, and the large
items are all stacked on top of each other, we have for each height ht ≤ h ≤ h′

t an
area guarantee of 4/9 using the proof from section 3, apart from a total height
of at most 1.

A small type may also be split among two large stacks, or among one stack
and levels of its own (not next to any stack). In this case, some height at the
top of the first stack might not contain small items. We can assign this addi-
tional height loss to the large (sub)type of that stack. We then find that for
each large and small (sub)type, there is a height of at most 1 at which we do
not have an area guarantee of 4/9. In total we have 10 large (sub)types in sep-
arate stacks and 21 + 13 + 1 = 35 small (sub)types and we find alg3(L) ≤
9/4 · opt(L) + 45.

5 Three-Dimensional Strip and Bin Packing

To pack items in a three-dimensional strip, we place each item such that its
weight, defined as in the previous section, is minimized. Note that this does not
mean simply placing it with its smallest dimension vertical, because the number
of times that the implied horizontal item fits in a square might depend on the
orientation.

We omit a detailed description of this algorithm in this extended abstract.
We show in the full version that the performance ratio of this algorithm (as well
as the additive constants) are identical to those of alg3. Moreover, we show
there that the packing generated by this algorithm can be transformed into a
packing for the three-dimensional bin packing problem, which loses a further
factor of 2 in the asymptotic performance ratio.

6 Conclusion

In this paper we design offline algorithms for six packing problems. Most of these
problems were not studied in on-line environments, which can be interesting as
well. It might be the case that some of the bounds in this paper are possible
to improve. Specifically we are interested in improving the constant for packing
in three dimensional bins (both for rotatable items and for the “This Side Up”
problem). This can be done by designing algorithms for these problems directly
instead of adaptation of algorithms for other problems.
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Abstract. The Directed Multicut (DM) problem is: given a simple di-
rected graph G = (V, E) with positive capacities ue on the edges, and a
set K ⊆ V × V of ordered pairs of nodes of G, find a minimum capacity
K-multicut; C ⊆ E is a K-multicut if in G−C there is no (s, t)-path for
every (s, t) ∈ K. In the uncapacitated case (UDM) the goal is to find a
minimum size K-multicut. The best approximation ratio known for DM
is min{O(

√
n), opt} by Anupam Gupta [5], where n = |V |, and opt is the

optimal solution value. All known non-trivial approximation algorithms
for the problem solve large linear programs. We give the first combina-
torial approximation algorithms for the problem. Our main result is a
Õ(n2/3/opt1/3)-approximation algorithm for UDM, which improves the√

n-approximation for opt = Ω(n1/2+ε). Combined with the paper of
Gupta [5], we get that UDM can be approximated within better than
O(

√
n), unless opt = Θ̃(

√
n). We also give a simple and fast O(n2/3)-

approximation algorithm for DM.

1 Introduction and Preliminaries

Problem formulation: An instance to the Directed Multicut (DM) problem con-
sists of a simple directed graph G = (V, E) with integral capacities ue on the
edges and a set K ⊆ V × V of ordered pairs of nodes of G. The goal is to find a
minimum K-multicut, that is, a minimum capacity edge set C so that in G−C
there is no (s, t)-paths for every (s, t) ∈ K. In the uncapacitated case (UDM),
all edges have capacities 1.

Related work: The case |K| = 1 is polynomially solvable based on the funda-
mental Max-Flow Min-Cut Theorem. For |K| > 1 the min-cut max-flow equality
breaks down even on undirected graphs. In fact, the undirected multicut prob-
lem is MAXSNP-hard even on stars [6]. [6] gives a 2-approximation algorithm
for the undirected multicut problem on trees. The best approximation ratio for
the minimum multicut problem on general undirected graphs is O(log |K|) [7].

G. Persiano and R. Solis-Oba (Eds.): WAOA 2004, LNCS 3351, pp. 61–67, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In [8], a related problem is studied. The input is as in the DM problem,
except that the pairs in K are unordered. The goal is to remove a min-cost
edge set C so that in G − C no cycle contains a pair from K. This problem
seems easier than the DM problem. In particular, divide and conquer methods
similar to the ones in [3, 7, 9] give an O(log2 |K|)-approximation for this variant
[8]. In [3] a relatively general scheme is presented handling many problems that
are “decomposable”, but DM does not seem to lend itself in any way to the
divide and conquer approach. Given this fact, it may be that the directed multi-
cut problem is harder to approximate than the undirected one. In particular, a
(poly)logarithmic approximation is not known for DM, nor for UDM. However,
so far, an exact proof separating the approximability of the undirected and di-
rected problems does not exist. In fact, the only approximation threshold known
for the directed case is the one derived from the undirected case: namely, that
the problem is MAXSNP-hard.

The first nontrivial approximation ratio O(
√

n lg n) for DM is due to Cheriyan,
Karloff, and Rabani [1]. This was slightly improved by Anupam Gupta [5] to
O(
√

n). Gupta’s analysis also gives an O(opt2) cost solution with opt the opti-
mal multicut capacity. This can be considered as an opt-approximation algorithm
and is useful in the case the value of opt is “small”. Both algorithms [1] and [5]
require solving large linear programs.

Our results: We design combinatorial approximation algorithms for DM. Let n
and m be the number of nodes and of edges, respectively, in the input graph.
Our main result is:

Theorem 1. For UDM there exists an algorithm with running time Õ(n2m)
that finds a multicut C of size O

(
(n lg n · opt)2/3

)
= Õ

(
(n · opt)2/3

)
.

The approximation ratio is Õ(n2/3/opt1/3). Therefore, Theorem 1 implies
that for UDM the

√
n-approximation can be improved if opt is large (e.g., opt =

Ω(n1/2+ε) for some ε > 0). This is the first algorithm whose approximation ratio
improves as opt gets larger. Combined with the results of [5] that provides an
O(opt)-approximation, we get approximation ratio better than Õ(

√
n), unless

opt = Θ̃(
√

n).
Our additional result is:

Theorem 2. DM admits an O(n2/3)-approximation algorithm with running time
Õ(nm2).

The approximation ratio in [5, 1] is better than the one in Theorem 2. How-
ever, our algorithm is very simple and runs faster than the algorithms in [5, 1];
the later can be implemented in O(n2m2) time using the algorithm of Fleisher
[4] for finding an approximate solution of multicommodity-flow type linear pro-
grams.

We prove Theorems 1 and 1 in Sections 2 and 3, respectively.
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Notation: Let G = (V, E) be a directed graph. For s, t ∈ V the distance dG(s, t)
from s to t in G is the minimum number of edges in an (s, t)-path; dG(s, t) =∞
if no (s, t)-path exists in G. For disjoint subsets S, T ⊆ V of V let δG(S, T ) =
{st ∈ E : s ∈ S, t ∈ T}.
We often omit the subscript G if it is clear from the context. An edge set C ⊆ E
is an (s, t)-cut if C = δ(S) for some S ⊆ V − t with s ∈ S. Let u(C) =

∑{ue :
e ∈ C} be the capacity of C; u(C) = |C| if no capacities are given. For simplicity
of the exposition, we ignore that some numbers are not integral. The adaptation
using floors and ceilings is immediate.

Preliminaries: Our algorithms run with certain parameters, which should get
appropriate values that depend on n and opt to achieve the claimed approxima-
tion ratios. Specifically, for UDM we show an algorithm that for any integer �

computes a multicut of size �·opt+O((n lg n)2/�2). Setting � = (n lg n)2/3
/opt1/3

gives the claimed approximation ratio. Since opt is not known, we execute the al-
gorithm for � = 1, . . . , (n lg n)2/3, and among the multicuts computed output one
of minimum size. For DM we show an algorithm that for any integers �, μ with
1 ≤ � ≤ n−1 and μ ≥ opt computes a K-multicut of capacity ≤ μ · (2�+n2/�2).
Setting � = n2/3 and μ = opt gives the claimed approximation ratio. Since opt
is not known, we apply binary search to find the minimum integer μ so that
a multicut of capacity ≤ μ · (2� + n2/�2) is returned. Note that if μ ≥ opt, a
multicut C of capacity ≤ μ(2� + n2/�2) is returned. If μ < opt, then either the
returned multicut C is of capacity ≤ μ(2� + n2/�2) < 3optn2/3 which is fine or
we know that μ < opt as the above inequality fails.

Remark: Recently we became aware of the [10] paper, which gives an Õ(n2/3)-
approximation algorithm for the related Edge-Disjoint Paths problem. Our result
for UDM, which was derived independently, and the main result in [10] rely on
the same combinatorial statement (Corollary 1 in our paper, Theorem 1.1 in
[10]), but the proofs are different.

2 The Uncapacitated Case

Definition 1. For X, Y ⊆V , let RG(X, Y )= |{(x, y) ⊆ X×Y : x �= y, dG(x, y) <
∞}| denote the number of pairs (x, y) ⊆ X ×Y , so that an (x, y)-path exists; let
R(G) = RG(V, V ).

We say that G = (V, E) is a p-layered graph if V can be partitioned into
p layers L1, . . . , Lp so that every e ∈ E belongs to δG(Li, Li+1) for some i ∈
{1, . . . , p− 1}.
Lemma 1. Let G = (V, E) be a 4-layered graph containing k edge-disjoint
(L1, L4)-paths such that G − δG(L2, L3) is a simple graph. Then R(L1, L3) +
R(L2, L4) ≥ k.

Remark: Observe that the graph induced by L2∪L3 may contain parallel edges.
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Proof. We will prove the statement by induction on k. The case k = 0 is obvious.
Assume k ≥ 1, and that E is a union of k edge-disjoint paths. Let st ∈ δG(L2, L3),
let G′ = G − {s, t}, and let S = {v ∈ L1 : vs ∈ E}, T = {v ∈ L4 : tv ∈ E}.
Then G′ contains at least k − (|S| + |T |) edge-disjoint (L1, L4)-paths. Also,
RG′(L1, L3) ≤ RG(L1, L3)−|S| and RG′(L2, L4) ≤ RG(L2, L4)−|T |. This follows
because of the removal of {s, t}. By the induction hypothesis, RG′(L1, L3) +
RG′(L2, L4) ≥ k − (|S|+ |T |). Combining, we get the statement.

Lemma 2. Let G be a simple �-layered graph containing k-edge disjoint paths
from the first layer to the last layer, and let S and T be the union of pS ≥ 2
first and pT ≥ 2 last layers, respectively, so that S ∩ T = ∅. Then R(S, T ) =
Ω(kpSpT ).

Proof. By Lemma 1, R(Li, Lj)+R(Li+1, Lj+1) ≥ k for every two pairs Li, Li+1 ⊆
S and Lj , Lj+1 ⊆ T . The statement follows by summing the contribution of all
such pairs.

Lemma 3. Let s, t be a pair of nodes in a simple graph G with dG(s, t) ≥ 2p lg n.
Then there exists an (s, t)-cut C so that R(G)−R(G− C) = Ω(|C|p2).

Proof. Consider the corresponding dG(s, t) BFS layers from s to t, where nodes
that cannot reach t are deleted. Let Xi be the layer at distance i from s, and let
Yi be the layer at distance i to t. Let kj be the maximum number of edge-disjoint
(Xj·p, Yj·p)-paths in the graph Gj induced by all the layers starting with Xj·p
and ending at Yj·�, j = 1, . . . , 2 lg n.

We claim that there exists an index j with kj ≤ 2 · kj−1. Otherwise, since
k0 ≥ 1, we have kj ≥ 2j . For j = log n we get kj ≥ n2, which is not possible in
a simple graph.

Let j be such an index with kj ≤ 2·kj−1, and let C be a minimum (Xj·p, Yj·p)-
cut, so |C| = kj . We now apply Lemma 2 on the graph Gj−1. Note that Gj−1
contains |C|/2 edge-disjoint paths between its first layer X(j−1)·� and its last
layer Y(j−1)·�; this is since kj = |C| by Menger’s Theorem, and kj−1 ≥ kj/2 by
the choice of j. Since C separates the first and the last p layers of Gj−1, the
statement follows from Lemma 2.

Corollary 1. For UDM there exists an algorithm that for any integer � finds
in Õ(mn2/�2) time a K-multicut B with |B| = O

(
(n lg n)2/�2

)
, where K =

{(u, v) : d(u, v) ≥ �}.
Proof. Let p = �/(2 lg n). The algorithm starts with B = ∅. While there is an
(s, t)-path for some (s, t) ∈ K it computes an (s, t)-cut C = Cst as in Lemma 3,
and sets B ← B∪C, G ← G−C. We claim that at the end of the algorithm |B| =
O(R(G)/p2) = O(n2/p2); we get that |B| = O

(
(n lg n)2/�2

)
by substituting

p = �/(2 lg n). Lemma 2 implies that there exists a constant α > 0 so that each
time Cst is deleted, R(G) is reduced by at least α|Cst|p2. Thus we get:

αp2 · |B| ≤ αp2 ·
∑

(s,t)∈K

|Cst| ≤ R(G) ≤ n2.
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The dominating time at each iteration is spent for computing a cut as in
Lemma 3. This can be done using O(lg n) max-flow computations, thus in
Õ(m|Cst|) time using the Ford-Fulkerson algorithm. Thus the total time required
is Õ(m|B|) = Õ(mn2/�2).

Given an integer �, apply the following algorithm starting with A, B = ∅:
While there is an (s, t)-path P with |P | ≤ � for some (s, t) ∈ K do:

A ← A + P , G ← G− P .
End While
Find in G−A a K-multicut B as in Corollary 1.

For any integer �, the algorithm computes a K-multicut C = A ∪ B of
size � · opt + O((n lg n)2/�2); |A| ≤ � · opt since any K-multicut contains at
least one edge of each path removed, and |B| = O((n lg n)2/�2) by Corol-
lary 1. As was explained in the introduction, we execute the algorithm for
� = 1, . . . , (n lg n)2/3, and among the multicuts computed output one of min-
imum size. For � = (n lg n)2/3

/opt1/3 we get the claimed approximation ratio.
Let us now discuss the implementation of the algorithm. After executing

Procedure 1 at iteration �, the graph G − A is used as an input for itera-
tion � + 1. As the total length of the paths removed is at most n2, the total
time of Phase 1 executions is O(mn2). The total time of Phase 2 executions is

Õ
(∑n2/3

�=1 mn2/�2
)

= Õ(mn2). Thus the time complexity is as claimed, and the
proof of Theorem 1 is complete.

3 An O(n2/3)-Approximation Algorithm for DM

The algorithm: Consider the following algorithm:
Input: An instance (G, u, K) of DM, and integers �, μ.
Initialization: C ← ∅.
While in G there is an (s, t)-path P for some (s, t) ∈ K do:

(a) Let P ’ is the union of the first and the last � edges of P (P ′ = P if
|P | < 2�);

(b) Among the (s, t)-cuts in G disjoint to P ′ compute one C ′ of minimum
capacity (u(C ′) =∞ if P ′ = P );

(c) If u(C ′) > μ then: ue ← ue −min{ue : e ∈ P ′} for every e ∈ P ′;
C ← C ∪ P ′

0, G ← G − P ′
0, where P ′

0 = {e ∈ P ′ :
ue = 0}.

Else (u(C ′) ≤ μ) C ← C ∪ C ′, G ← G− C ′.
End While

Theorem 3. At the end of the algorithm C is a K-multicut. If μ ≥ opt then
u(C) ≤ μ · (2� + n2/�2).

Proof. Assume that μ ≥ opt. Consider a specific iteration of the main loop, and
the edge sets P ′, C ′ found. There are two possible cases.

If u(C ′) > μ then u(C ′) > μ ≥ opt. This implies that any minimum K-
multicut contains at least one edge from P ′. Hence, after setting ue ← ue −
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min{ue : e ∈ P ′} for every e ∈ P ′ the optimum decreased by at least min{ue :
e ∈ P ′}. Since |P ′| = 2�, the total capacity of the edges in all sets P ′

0 added into
C during the algorithm is at most 2�opt ≤ 2�μ.

Otherwise, if u(C ′) ≤ μ then R(G)−R(G−C ′) ≥ �2. Thus the total number
of cuts C ′ removed during the algorithm ≤ n2/�2, and their total capacity ≤
μn2/�2.

To see that R(G)−R(G− C ′) ≥ �2, let P ′
F and P ′

L be the first and the last
� nodes in P , respectively. We claim that RG(P ′

F , P ′
L) = |P ′

F | · |P ′
L| = �2 and

RG−C′(P ′
F , P ′

L) = 0. The first statement follows from the simple observation that
P ′

F , P ′
L belong to the same path P of G, and thus dG(u, v) < ∞ for every pair u, v

with u ∈ P ′
F , v ∈ P ′

L. To see the second statement, note that in dG−C′(u, v) = ∞
for every such pair u, v, as otherwise there would be an (s, t)-path in G − C ′,
contradicting that C ′ is an (s, t)-cut in G.

As was mentioned in the introduction, for � = n2/3 we use binary search to
find the minimum integer μ so that a multicut of capacity ≤ μ · (2� + n2/�2) is
returned. Theorem 3 implies that μ ≤ opt, and the required ratio follows.

Implementation: We can assume that ue ∈ {1, . . . , n4} or ue = ∞ for every
e ∈ E. In this case binary search for appropriate μ requires O(lg(n6)) = O(lg n)
iterations. Indeed, let c be the least integer so that {e ∈ E : ue ≤ c} is a K-
multicut. Edges of capacity ≥ cn2 do not belong to any optimal solution, and
their capacity is set to ∞. Edges of capacity ≤ c/n2 are removed, as adding
all of them to the solution affects only the constant in the approximation ratio.
This gives an instance with umax/umin ≤ n4, where umax and umin denote the
maximum finite and the minimum nonzero capacity of an edge in E, respectively.
Further, for every e ∈ E set ue ← �ue/umin
. It is easy to see that the loss
incurred in the approximation ratio is only a constant, which is negligible in our
context.

The dominating time is spent for computing O(m) minimum cuts at step
(b); each such computation leads to a removal of an edge, since reducing the
capacities along P ′ by min{ue : e ∈ P ′} guarantees that at least one edge gets
capacity zero. As a max-flow/min-cut computation can be done in Õ(nm) time
(c.f., [2]), the total running time is Õ(nm2). This finishes the proof of Theorem 2.

Acknowledgment. The second author thanks Joseph Cheriyan for suggesting the
problem and for helpful discussions, and Howard Karloff and Aravind Srinivasan
for useful discussions.
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Abstract. We consider a general class of scheduling problems where
a set of dependent jobs needs to be scheduled (preemptively or non-
preemptively) on a set of machines so as to minimize the weighted sum
of completion times. The dependencies among the jobs are formed as an
arbitrary conflict graph. An input to our problems can be modeled as
an instance of the sum multicoloring (SMC) problem: Given a graph and
the number of colors required by each vertex, find a proper multicoloring
which minimizes the sum over all vertices of the largest color assigned
to each vertex. In the preemptive case (pSMC), each vertex can receive
an arbitrary subset of colors; in the non-preemptive case (npSMC), the
colors assigned to each vertex need to be contiguous. SMC is known to
be no easier than classic graph coloring, even in the case of unit color
requirements.

Building on the framework of Queyranne and Sviridenko (J. of Schedul-
ing, 5:287-305, 2002 ), we present a general technique for reducing the
sum multicoloring problem to classical graph multicoloring. Using the
technique, we improve the best known results for pSMC and npSMC on
several fundamental classes of graphs, including line graphs, (k+1)-claw
free graphs and perfect graphs. In particular, we obtain the first con-
stant factor approximation ratio for npSMC on interval graphs, on which
our problems have numerous applications. We also improve the results
of Kim (SODA 2003, 97–98 ) for npSMC of line graphs and for resource-
constrained scheduling.

1 Introduction

We consider a general class of problems in which jobs that utilize non-sharable
resources need to be scheduled (preemptively or non-preemptively) on multiple
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machines. Scheduling any job j depends on whether another job sharing resources
with j is being scheduled. The dependencies among the jobs are modeled by an
arbitrary conflict graph, in which the vertices represent the jobs, and an edge
between two vertices means that the corresponding jobs cannot be scheduled
simultaneously. Then the problem of scheduling dependent jobs can be formu-
lated as a coloring problem: a proper coloring of the conflict graph partitions the
set of jobs to subsets of non-conflicting jobs. Thus, when all jobs have the same
(unit) execution time, we get a graph coloring problem, and when the execution
times are arbitrary, we get a graph multicoloring problem.

In this work, we focus on the sum of completion times measure. For unit-
length jobs, this is known as the chromatic sum or sum coloring (SC) of the
conflict graph. Let G = (V, E) be the conflict graph. Given a coloring ψ of G,
the sum coloring of ψ is given by SC(G, ψ) =

∑
v ψ(v). The minimum chromatic

sum of G is given by SC(G) = minψ SC(G, ψ). In the weighted case, each vertex v
has a weight, wv, and we need to minimize

∑
v wvψ(v) over all proper colorings.

An instance of a multicoloring problem is a pair (G, x), where G = (V, E) is
a graph, and x is a vector of color requirements (or lengths) of the vertices. A
multicoloring of G is an assignment ψ : V → 2N, such that each vertex v ∈ V is
assigned a set of xv distinct colors, and adjacent vertices receive non-intersecting
sets of colors. Denote by fv(ψ) = maxi∈ψ(v) i the largest color assigned to v
by a multicoloring ψ. The sum multicoloring (SMC) of ψ on G is SMC(G, ψ) =∑

v∈V fv(ψ). The SMC problem is to find a multicoloring ψ, such that SMC(G, ψ)
is minimized. In the weighted case, we want to minimize

∑
v∈V wvfv(ψ), over

all proper multicolorings ψ. When all the color requirements are equal to 1, the
problem reduces to SC. A multicoloring, ψ, is called non-preemptive if the colors
assigned to each vertex v are contiguous, i.e., if for any v ∈ V , (maxi∈ψ(v) i) −
(mini∈ψ(v) i) + 1 = xv. We denote this version of the problem by npSMC; the
preemptive problem, where each vertex v can receive any set of xv colors, is
denoted by pSMC.

Scheduling dependent jobs, and the resulting variants of the sum (multi)
coloring problem, have numerous applications, in particular on interval graphs.
The following practical scenarios yield instances of our problems on this natural
subclass of graphs.

Session scheduling on a path: In a path network, pairs of nodes need to
communicate, for which they need use of the intervening path. If two paths
intersect, the corresponding sessions cannot be held simultaneously. In this case,
it would be natural to expect the sessions (i.e., “jobs”) to be of different lengths,
leading to the sum multicoloring problem on interval graphs.

Storage allocation: Storage allocation in a warehouse involves minimizing
the total distance traveled by a robot [W97]. Goods are checked in and out at
known times; thus, goods that are not in the warehouse at the same time can
share the same location. We represent each of the goods by an interval on the
line, which gives the time interval in which it is available at the warehouse.
Numbering the storage locations by their distance from the counter, the total
distance corresponds to sum coloring the intervals formed by the goods.
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VLSI design: In the wire-minimization problem [NSS99], terminals lie on a
single vertical line (each terminal is represented by an interval on this line), and
with unit spacings are vertical bus lanes. Pairs of terminals are to be connected
via horizontal wires on each side to a vertical lane, with non-overlapping pair uti-
lizing the same lane. With the vertical segments fixed, the wire cost corresponds
to the total length of horizontal segments. Numbering the lanes in increasing
order of distance from the terminal line, lane assignment to a terminal corre-
sponds to coloring the terminal’s interval by an integer. The wire-minimization
problem then corresponds to sum coloring an interval graph.

Other applications of sum (multi)coloring include traffic intersection control,
session scheduling in local-area networks and compiler design (a comprehensive
survey appears in [BHK+00]). Instances of SMC on line graphs and, more gen-
erally, on (k + 1)-claw free graphs, are derived mainly from applications that
involve resource constrained scheduling. Our results apply also to permutation
graphs, which model, e.g., train scheduling problems.

1.1 Our Results

We present (in Section 2.1) a general technique for reducing SMC to the classic
graph (multi)coloring problem. Using the technique, we improve the best known
results for pSMC and npSMC on several fundamental classes of graphs, including
line graphs, (k+1)-claw free graphs and perfect graphs. In particular, we obtain
the first constant factor approximation ratio for npSMC on interval graphs. Our
improved bound of 7.682 for npSMC of line graphs is achieved by a simple greedy
algorithm (see in Section 3.1). The previous best ratio of 10, achieved by an
algorithm of Kim [K-03], involved solving an LP with an exponential number of
constraints.

While our main focus is on minimizing the sum of completion times of the
jobs, our technique can be applied to other minsum optimization problems, such
as resource constrained scheduling (RCS). In RCS, we have a set of jobs, each
requesting up to k resources; jobs that need to utilize the same resource cannot
be processed simultaneously. We say that a resource has completion time i if
the last job utilizing this resource completes at time i. Our goal is to find a
non-preemptive schedule that minimizes the sum of completion times of all the
resources. We show (in Section 4) that our technique yields an approximation
ratio of 2e · k ≈ 5.437k. This improves the best ratio known of 8k − 7 given
in [K-03], for any k ≥ 3.

For simplicity, in formulating our results it is implicitly assumed that the
number of machines is “unbounded”. The technique can, however, be applied in
a system with any given number of machines, with slightly weaker performance
ratios (see in [?]). Also, we formulate our results for the unweighted case, and
show (in Section 4) how to generalize the results for the weighted versions of the
problems.

Relation to Min-sum Set Cover: Our results include an approximation ratio
of 3.591 for sum coloring of perfect graphs. This improvement upon the previous
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ratio of 4 (of [BBH+98]) is of particular interest, due to the relation of SC to
the min-sum set cover problem. The input to min-sum set cover consists of a
universe U and a collection of subsets S = {Si}, Si ⊆ U . A feasible solution is an
ordered sub-collection of subsets S ′ = {S′

1, S
′
2, . . .}, such that

⋃
i S′

i = U . We say
that u ∈ U has cover time i if S′

i is the first subset in the order of S ′ to include u.
The goal is to minimize the sum of cover times over all the elements of U . Feige et
al. [FLT-02] showed that min-sum set cover admits a 4-approximation and that,
unless P=NP, for any constant ε > 0, there is no (4− ε)-approximation. Observe
that SC is a special case of min-sum set cover, in which S is the collection of all
independent sets in G. Hence, our 3.591-approximation implies that the min-sum
set cover problem in its full generality is provably harder to approximate than
SC on perfect graphs.

Techniques: Our general approximation technique builds on the framework
of Queyranne and Sviridenko [QS-02] for scheduling jobs with release times on
parallel machines. As in [QS-02], we divide the time line into intervals of geomet-
rically increasing size (see also [HSW-96, HSSW-97]), using randomized starting
points (as introduced in [CP+96]), and approximate the classic makespan prob-
lem on each block. Note, however, that the results in [QS-02] do not apply to
arbitrary conflict graphs. The class of problems studied in [QS-01, QS-02] include
shop scheduling (open shop and job shop) and entail a different optimization cri-
teria than SMC. (As shown in [GHKS04], open shop scheduling is in fact a special
case of the data migration problem [K-03].)

1.2 Related Work

The SC problem was introduced in [K89] and the SMC problems in [BHK+00].
Table 1 summarizes the known results for SC, pSMC and npSMC in various classes
of graphs. New bounds given in this paper are shown in boldface. In each of these
entries, we give in parenthesis the previous best known bound for the problem.
Entries marked with · follow by inference, either by using containment of graph
classes (interval graphs are perfect), or by SC being a special case of SMC. When
omitted, [BBH+98] is the references for SC and [BHK+00] for SMC. Also, in the
table below, c represents some constant.
There is a wide literature on parallel machine scheduling with the objective

of minimizing the sum of completion times. These works generally deal with
scheduling independent jobs, or allow for precedence constraints which are di-
rected dependencies. The undirected conflict graphs considered here require quite
different treatment.

Some work has been done on resource-constrained scheduling. Kubale [K-96]
studied the complexity of scheduling biprocessor tasks. They also investigate spe-
cial classes of graphs, and showed that npSMC of line graphs of trees is NP-hard
in the weak sense. Afrati et al. [AB+00] gave a polynomial time approximation
scheme for the problem that we consider, minimizing sum of completion times of
dedicated tasks. However, their method applies only to the case where the total
number of processors is a fixed constant. Coffman et al. [CG+85] analyzed the
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Table 1. Known results for sum (multi-)coloring problems

SC SMC
u.b. l.b. pSMC npSMC

General graphs · n1−ε n/ log2 n n/ log n

Perfect graphs 3.591 (4) c > 1 [BK98] 5.436 (16) O(log n)
Interval graphs 1.796 [HKS03] c > 1 [G01] 5.436 (7.184) 11.273 (O(log n))
Bipartite graphs 27/26 [G+02] c > 1 [BK98] 1.5 2.8
Planar graphs PTAS [HK02] NPC [HK02] PTAS [HK02] PTAS [HK02]
Trees 1 [K89] PTAS [HKP+03] 1 [HKP+03]
k + 1-claw free k k 1.796k2+.5 (4k2−2k) [HKS03]
k-sets k k 3.591k+.5 (6k−2) [K-03]
Line graphs 2 NPC 2 7.682 (10) [K-03]

makespan version of npSMC of line graphs, which arises in the file transfer prob-
lem. They showed that a class of greedy algorithms yields a 2-approximation and
gave a (2+ε)-approximation for a version with more general resource constraints.
Kim [K-03] gave an LP formulation of the npSMC problem on line graphs and
intersection graphs of k-sets,1 improving the earlier bounds of [HKS03]. The
paper presents also a ratio of 8k − 7 for the RCS problem with k resources.

2 Sum Multicoloring via Makespan Approximations
In this section we describe and analyze our main approximation technique. Later,
we show how to obtain our results by applying the general technique to specific
classes of graphs, and to the different variants of the sum multicoloring problem
that we consider here.

2.1 Algorithms and Implementation

Our technique uses two components: (i) a lower bound, f∗
v , on the completion

time of the vertex v in an optimal solution, for any v ∈ V ; a parameter d ≥ 1,
which indicates how well the lower bound captures the optimal value; (ii) a
(makespan) multicoloring algorithm A with performance ratio ρ, for some ρ ≥ 1.

Given the f∗
v values, the algorithm schema, ALG, breaks the time line (or the

color sequence 1, 2, . . .) into intervals. We use in the partition two parameters: α,
chosen uniformly at random from [0, 1), and a constant β > 1 (to be optimized).
Let ck = βα+k, for k = 0, 1, . . . , L, where cL ≥ maxv xv. The intervals induce a
partition of the graph into blocks V� = {v ∈ V : c�−1 < f∗

v ≤ c�}, � = 1, . . . , L,
of vertices whose completion times (f∗

v ) fall in the respective interval. We then
apply the makespan multicoloring algorithm on each block in sequence. We show
that when this is possible, our algorithm attains a ratio of d · eρ ≈ 2.718dρ for
pSMC, 1.796dρ + 0.5 for npSMC, and 1.796dρ for SC.

1 We give the precise definition in Section 3.1.
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The lower bounds, f∗
v , can be obtained either by solving a linear program,

or by using an approximation algorithm for the preemptive sum multicoloring
problem. This results in two algorithms described below. As shown in Section 2.2,
we can unify the analyses of the two algorithms, once we guarantee that each
satisfies certain properties.

LP-based Algorithm: One way to obtain the f∗
v values is by solving the

LP relaxation of an integer programming formulation of the problem. (Such LP
relaxations have been used in the past in scheduling independent jobs; see, e.g.,
[W-85, Q-93, S-96].) Before we describe our LP-based algorithm, we give some
underlying properties of this algorithm. Let OPT be the cost of an optimal
solution, and OPT ∗ =

∑
v f∗

v the total of the lower bounds f∗
v . Also, we denote

by ω(H, x) the maximum weight of any clique in a subgraph H, i.e., largest sum
of color requirements. For a subset U of vertices, let x(U) =

∑
u∈U xu.

We require that the following properties be satisfied:

(P1) OPT ∗ ≤ OPT .
(P2a) maxv∈V�

f∗
v ≥ ω(V�, x)/d, for some d ≥ 1, for all 1 ≤ � ≤ L.

(P2b) There is a multicoloring algorithm, A, that approximates the
makespan of any graph in the given graph class within a ρ factor of the
weighted clique size, and in particular,

A(V�, x) ≤ ρ · ω(V�, x), for � = 1, 2, . . . , L. (1)

We formulate sum multicoloring with an integer program that uses linear
ordering variables (see, e.g., [P-80, HSSW-97]). For any edge uv ∈ E, there is
a variable δuv ∈ {0, 1}, such that δuv = 1 if u precedes v in the schedule, and
0 otherwise. Let N(v) denote the set of neighbors of v in G, and C1, . . . , CNv

denote the maximal cliques in N(v). The constraints (2) follow from the require-
ment that the vertices in any clique C are assigned disjoint sets of colors; thus
the completion time fv of a vertex v in a clique C is at least the sum of the
color requirements of the vertices in C that completed before v plus that of v
itself.

(LP ) minimize
∑
v∈V

fv

subject to: ∀v ∈ V, 1 ≤ r ≤ Nv : fv ≥ xv +
∑

u∈Cr

xuδuv (2)

∀uv ∈ E : δuv + δvu = 1

In the linear relaxation of LP, we allow fv to take non-integral values ≥ 1. We
denote by f∗

v the value of fv in an optimal LP solution. Note that the program
is equally valid for the preemptive and non-preemptive variants.

The next lemma shows that the above LP formulation satisfies property
(P2a) with d = 2. It is based on a result of [K-03] (Lemma 2.3), attributed
to [HSSW-97].
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Lemma 1. For any 1 ≤ � ≤ L, maxv∈V�
f∗

v ≥
ω(V�, x)

2
.

In particular, since maxv∈V�
f∗

v ≤ c�, this implies that c� ≥ ω(V�, x)/2 for � =
1, . . . , L.

Proof. Let C be a clique in G. Let fv be the completion time of v ∈ C in the
solution for LP . Indeed, C \ {v} ⊆ N(v). From LP , we get that∑

v∈C

xvfv ≥
∑
v∈C

xv(xv +
∑

u∈C,u �=v

xuδuv)

=
∑
v∈C

x2
v +

∑
u,v∈C

(xvxuδuv + xvxuδvu)

≥
∑

v∈C x2
v + (

∑
u∈C xu)2

2
(3)

Now, let C� be a maximum weight clique in V�, and let v� be the vertex in C� with
the largest completion time in V�, f∗

v�
. From (3), we have that

∑
u∈C�

xufu ≥
x(C�)2/2 = ω(V�, x)2/2. We also have that

∑
u∈C�

xufu ≤ f∗
v�

∑
u∈C�

xu =
f∗

v�
x(C�) = f∗

v�
ω(V�, x).

We now summarize the steps of the LP-based algorithm with parameters β, α>1.

Algorithm ALGLP

(i) Solve the linear program LP to obtain the f∗
v values.

(ii) Partition the vertices in the graph to the blocks V1, V2, . . . by their f∗
v values.

(iii) Color the blocks in sequence using a non-preemptive multicoloring algorithm
A which satisfies Property (P2b); that is, suppose that the last color used
for the block V� is col�, then A starts coloring the block V�+1 with col� + 1.

Applying an Approximation Algorithm for pSMC: An alternative way
of obtaining the infeasible solution, f∗

v , is to use the preemptive solution when
solving the non-preemptive problem. In this case, we replace (P2a) and (P2b)
by the following properties.

(P2a′) There is a d-approximation algorithm for pSMC, for some d ≥ 1.
(P2b′) There is non-preemptive multicoloring algorithm, A, that ap-
proximates the makespan of any graph in the given graph class within
a ρ factor of the number of colors used by a preemptive multicoloring,
and in particular,

A(V�, x) ≤ ρ · pMC(V�, x), for � = 1, 2, . . . , L. (4)

We now summarize the steps of the algorithm based on the approximation
for pSMC. The algorithm gets as parameters the values β, α > 1.

Algorithm ALGPRE

(i) Apply to G a d-approximation algorithm for pSMC. Let fpre
v be the completion

time of v ∈ V . Set for any v ∈ V , f∗
v = fpre

v /d,
(ii) Partition the vertices in the graph to the blocks V1, V2, . . . by their f∗

v values.
(iii) Color the blocks in sequence using a non-preemptive multicoloring algorithm

A which satisfies Property (P2b′).
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2.2 Analysis

We use in the analysis the following notation. Recall that the (multi)chromatic
number χ(G) of a graph G is the minimal number of colors required for (multi)
coloring the vertices in G properly. In scheduling terms, this is the minimal total
length (or makespan) of any legal schedule. We use the notation pMC, npMC for
the preemptive and non-preemptive versions of this problem, respectively. Let
�v denote the block into which v falls ( �v is a function of α). Let t� denote the
number of colors used by the multicoloring algorithm A on block �. If we apply
algorithm ALGLP, then by properties (P2a) and (P2b),

t� ≤ ρω(V�, x) ≤ ρdc�. (5)

Similarly, if we use ALGPRE, we have that tl ≤ ρ · pMC(V�, x) ≤ ρ maxv∈V�
fpre

v =
ρd maxv∈V�

f∗
v ≤ ρdc�. We proceed to analyze our algorithm schema, ALG, with-

out making any assumptions on the algorithm used (i.e., the analysis applies for
both ALGLP and ALGPRE).

Denote by f̃v the last color (completion time) of a vertex v by our algorithm
schema ALG. This color is the sum of the makespans of the colorings of the
previous blocks, plus the completion time f ′

v of v within the current block, i.e.
f̃v =

∑�−1
r=1 tr + f ′

v.

Bound for pSMC: We first consider a general scenario, that captures, e.g., the
preemptive case. We trivially bound the last color of v ∈ V� under A by the total
number of colors used, i.e., f ′

v ≤ t�. Hence, we get for each vertex independently
that

f̃v ≤
�∑

r=1

tr ≤ d · ρβα+�+1

β − 1
, (6)

and

ALG(V, x) =
∑
v∈V

f̃v ≤ d · ρ
∑
v∈V

βα+�v+1

β − 1
= d · ρ · β

β − 1

∑
v∈V

c�v , (7)

where �v is the block in which v is colored and c� is the largest color in block �.
We now select α uniformly at random from [0, 1). Then �v and c� are also

random variables.

Lemma 2. For any β > 1 and v ∈ V , E[c�v
] = β−1

ln β f∗
v , where the expectation is

over the random choices of α.

Proof. By the definition of �v, c�v−1 = βα+�v−1 < f∗
v ≤ βα+�v = c�v

. Let us
write f∗

v = βx, i.e. x = logβ f∗
v . Let yv = �v + α − x and note that yv is in the

range [0, 1). We may write yv = (α−x) mod 1. The values f∗
v and x are fixed and

independent of α. Thus, when α is chosen uniformly at random from [0, 1), yv is
also uniformly distributed in [0, 1). The random variable βyv then has expected
value

E[βyv ] =
∫ 1

0
βtdt =

β − 1
lnβ

.
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Hence,

E[c�v ] = E[β�v+α] = E[β�v+α−x] · βx =
β − 1
lnβ

f∗
v . (8)

Recall that OPT ∗ =
∑

v f∗
v . Combining (7) with Lemma 2 we get that

E[ALG(V, x)] ≤ dρ
β

β − 1

∑
v∈V

β − 1
lnβ

f∗
v ≤ dρ

β

lnβ
OPT ∗.

The function f(β) = β/ lnβ is minimized when β = e ≈ 2.718. This gives the
following.

Theorem 1. There is a (d · eρ)-approximation algorithm for pSMC.

Bound for npSMC: In the non-preemptive case, we may use the schedule output
by algorithm A for V� either directly or reversed. In the reverse order, any vertex
v, whose last color is fv, is colored with (t�−fv+1), (t�−fv+2), . . . , (t�−fv+xv).
By selecting the order that yields the better weighted average completion time,
we may assume that on average, each job is at least half-way through completion
at the half-way mark for V�. That is, on average, for any vertex v ∈ V�, f ′

v ≤
(t� + xv)/2. Thus, we have

f̃v ≤
�−1∑
r=1

tr +
t�
2

+
xv

2

≤ d · ρ
(

βα+�

2
+

�−1∑
r=0

βα+r

)
+

xv

2
(9)

≤ d · ρβα+�

(
1
2

+
1

β − 1

)
+

xv

2

= d · ρ · c�

(
β + 1

2(β − 1)

)
+

xv

2
(10)

Combining (10) with Lemma 2 we have

E[ALG(V, x)] =
∑
v∈V

E[f̃v] ≤ d · ρ β + 1
2(β − 1)

∑
v

E[c�v ] +
x(V )

2

= d · ρβ + 1
2 lnβ

OPT ∗ +
x(V )

2

The function f(β) = (β + 1)/ lnβ is minimized when β = γ ≈ 3.59112, for a
ratio of dγρ/2 + 0.5.

Note that the above schema can be derandomized, by partitioning the interval
(0, 1] to smaller intervals; we can then search for the best value for α in these
intervals, to within desired precision. We summarize in the next result.
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Theorem 2. There is a (dγρ/2+0.5)-approximation algorithm for npSMC, where
γ ≈ 3.59112.

Deterministic and simultaneous approximation: If we make do without
randomization, we can still obtain reasonable bounds that translate to simulta-
neous approximations of makespan and weighted completion time.

By the definition of V�, f∗
v > βα+�−1. Then, from (6) we obtain, for each

vertex v, a bound of
f̃v

f∗
v

≤ d · ρ β2

β − 1
.

This is optimized when β = 2,

Theorem 3. There is an algorithm that approximates simultaneously pSMC
(npSMC) and pMC (npMC), to within factor 4dρ.

Sum coloring approximation: When the graph has unit color requirements,
we get the SC problem. For this case, we obtain a slight improvement.

Theorem 4. There is a (dγρ/2)-approximation algorithm for SC, where γ ≈
3.59112.

Proof. Continuing from (9), we have

∑
v∈V�

f̃v ≤ dρ|V�|(βα+�

2
+

�−1∑
r=0

βα+r) +
1
2

∑
v∈V�

xv

= dρ|V�|(βα+�

2
+ βα β� − 1

β − 1
) +

1
2

∑
v∈V�

xv

= dρ|V�|(βα+� β + 1
2(β − 1)

− βα

β − 1
) +

1
2

∑
v∈V�

xv.

Thus,

ALG(V, x) =
∑
v∈V

f̃v ≤ dρ
∑
�≥1

|V�|
[

β + 1
2(β − 1)

βα+� − βα

α− 1

]
+
|V |
2

.

Hence, applying Lemma 1, we have

E[ALG(V, x)] =
∑
v∈V

E[f̃v] ≤ dρ
∑

v

[
E[c�v

] · β + 1
2(β − 1)

− 1
β − 1

]
+
|V |
2

= dρ · β + 1
2 lnβ

OPT ∗ − dρ|V |
β − 1

+
|V |
2
≤ dρ · β + 1

2 lnβ
OPT ∗.

The last inequality follows from the fact that ρd
β−1 > 1/2, since ρ ≥ 1, β < 5,

and in the cases we have studied, d ≥ 2.
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3 Approximating Sum Multicoloring
We now apply our technique to the npSMC problem on several classes of graphs.
We use both the preemptive approximation and the LP-based algorithm.

3.1 Approximating npSMC

Line graphs: Here we can apply both the LP and the preemptive relaxations
with equal performance ratio, but the latter is both combinatorial and more
efficient. A greedy 2-approximation algorithm for pSMC on line graphs is pre-
sented in [BHK+00] (that holds also in the weighted case). Thus, we can apply
algorithm ALGPRE, with d = 2.

For non-preemptive multicoloring line graphs, we use the greedy algorithm
of [CG+85] that schedules each job as early as possible (i.e. colors each vertex
with the smallest possible colors), breaking ties arbitrarily. This ensures that
each vertex is always waiting for a neighbor until it is scheduled to completion.
The completion time of a vertex is then at most the sum of the lengths of its
neighbors, which is at most twice the length of the larger clique involving the
vertex (see [CG+85]). Thus, in this case, we have ρ = 2. Now, using Theorem 2,
we get a performance bound for line graphs.

Theorem 5. There is a 7.683-approximation algorithm for npSMC on line graphs.

This improves on the recent factor of 10 by Kim [K-03] and the factor of 12
obtained by a combinatorial (greedy) algorithm in [HKS03]. Observe that the
non-preemptive algorithms are all measured in terms of the preemptive optimum.
Intersection graphs of k-sets: Resource-bounded scheduling when each job
uses at most k resources is modeled by graphs that are intersection graphs of
sets of size at most k. For each resource r, the vertices using that resource form a
clique Cr. Then, for any v ∈ V , N(v) can be partitioned into at most k maximal
cliques.

We can extend the LP-based strategy for line graphs to intersection graphs
of k sets. In this case, the non-preemptive greedy multicoloring algorithm of
[CG+85] uses at most kω colors, where ω is the maximal size of any of the
resource cliques. Thus, it suffices to consider only cliques induced by individual
resource, and not those cliques formed by interplay of a collection of resources.
In other words, the clique constraints in LP need only involve the resource-
cliques, therefore the number of constraints in polynomial. Hence, we obtain a
non-preemptive solution with d = 2 and ρ = k, and by Theorem 2, we get

Theorem 6. There is a (3.591k+0.5)-approximation for npSMC on intersection
graphs of k-sets.

This improves on the ratio of 6k − 2 of [K-03].
(k + 1)-claw free graphs: The combinatorial strategy for line graphs can
be generalized for (k + 1)-claw free graphs, albeit with a worse ratio function
than for LP-based algorithm for intersection graphs of k-sets. The sorted greedy
algorithm of [BHK+00] yields a ratio of k for pSMC in (k + 1)-claw free graphs,
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resulting in a preemptive relaxation with d = k in our schema. Also, as above,
the makespan algorithm has performance ratio ρ = k. Thus, we get

Theorem 7. There is a combinatorial (1.796k2 +0.5)-approximation for npSMC
on (k + 1)-claw free graphs.

Interval graphs: The npMC problem on interval graphs is better known as
dynamic storage allocation. Gergov gave an algorithm that uses at most 3ω(G)
colors [G-99]. The number of maximal cliques in an interval graph is at most n.
Thus, LP has a polynomial number of constraints and we can use it to obtain
a multicoloring satisfying (P1) and (P2a), with d = 2. We can also use the
approximation of the preemptive solution of [HKS03] as a relaxation with d =
7.184. Applying Theorem 2, we obtain the first constant approximation factor
for this problem.

Theorem 8. There is an 11.273-approximation and a combinatorial 38.7-approx-
imation for npSMC on interval graphs.

3.2 Approximating pSMC

Perfect graphs: On perfect graphs, LP can be solved in polynomial time,
even though the number of constraints may be exponential, because there is a
polynomial time separation algorithm: given a solution f for LP , we can test in
polynomial time whether all the constraints are satisfied. For a vertex v ∈ V ,
we set, for each neighbor u ∈ N(v), x′

u = xuδuv. We can now find the maximum
weight clique in N(v) with respect to x′, since any subgraph of G is perfect.
Then, we can test in polynomial time whether fv satisfies the constraint (2)
by checking whether the inequality holds for this maximum weight clique. (For
more details, see e.g., [Q-93].) The solution for LP yields a multicoloring ψ∗

that satisfies (P1) and (P2), with d = 2. The multicoloring problem pMC on
perfect graphs is solvable in polynomial time, within arbitrary desired precision,
as shown in [GLS-93], yielding our ρ = 1 + O(1/n). Applying Theorems 1 and
4, we improve on the previous best factors of 16 for pSMC [BHK+00] and 4 for
SC [BBH+98].

Theorem 9. There is a 2e ≈ 5.436-approximation for pSMC and a 3.592-approx-
imation for SC on perfect graphs.

4 Extensions

Weights: Note that vertex weights can be added in our LP formulation, to
get the fractional values f∗

v that satisfy (P1) and (P2) for the weighted minsum
objective. We then apply as before for each block � the makespan algorithm A.
Release times: Our technique can be applied also in the case where each job Jj

has a release time, rj . In this case, in the LP formulation we add for any vertex
v the constraint fv ≥ rv + xv. This ensures that, for any v ∈ V�, rv ≤ c�. Hence,
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when applying the makespan algorithm, A, we start scheduling the vertices in V�

at max(
∑�−1

r=1 tr, β
α+�). This is attained by taking β = 2, which slightly increases

the performance bounds that we obtained for ALG, both in the preemptive and
the non-preemptive case.

Theorem 10. ALG attains a ratio of dρ1.5/ ln 2 ≈ 2.16dρ for npSMC and dρ2/ ln
2 ≈ 2.89dρ for pSMC instances with release times.

Resource Constrained Scheduling: Recall that in RCS, the resources are
represented as cliques in our conflict graph G. Let C denote the set of maximal
cliques in G, then RCS can be formulated as the following linear program.

(LP −RCS) minimize
∑

Ĉ∈C fĈ

subject to: ∀Ĉ ∈ C, ∀v ∈ Ĉ : fv ≥ xv +
∑
u∈Ĉ

xuδuv

∀Ĉ ∈ C, ∀v ∈ Ĉ : fC ≥ fv (11)
∀uv ∈ E : δuv + δvu = 1 (12)

This corresponds to only the last vertex of each clique contributing to the
objective function in the npSMC problem. Our analysis in the preemptive case was
separate for each vertex, bounding the cost for the vertex only by the last color
used in that block. Thus, we obtain an approximation ratio of 2e · k for RCS.
This improves on the previous ratio of 8k − 7 presented by Kim [K-03], for any
k ≥ 3. For k = 2, the ratio of 10.45 is worse than the best known approximation
ratio of 5.055 [GHKS04], but is achieved by a polynomial-size linear program.

Acknowledgments. We thank Moses Charikar and Chandra Chekuri for help-
ful comments and suggestions.
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Abstract. We consider the problem of placing n points, each one inside
its own, prespecified disk, with the objective of maximizing the distance
between the closest pair of them. The disks can overlap and have different
sizes. The problem is NP-hard and does not admit a PTAS. In the L∞
metric, we give a 2-approximation algorithm running in O(n

√
n log2 n)

time. In the L2 metric, similar ideas yield a quadratic time algorithm
that gives an 8

3 -approximation in general, and a ∼ 2.2393-approximation
when all the disks are congruent.

1 Introduction

The problem of distant representatives was recently introduced by Fiala et al. [11,
12]: given a collection of subsets of a metric space and a value δ > 0, we want
a representative of each subset such that any two representatives are at least δ
apart. They introduced this problem as a variation of the problem of systems of
disjoint representatives in hypergraphs [1]. It generalizes the problem of systems
of distinct representatives, and it has applications in areas such as scheduling or
radio frequency (or channel) assignment to avoid interferences.

As shown by Fiala et al. [11, 12], and independently by Baur and Fekete [3],
the problem of deciding the existence of distant representatives is NP-hard even
in the plane under natural metrics. This problem naturally embeds within the
context of packing and map labelling problems, which has a much longer history;
see the discussion in [3] and references therein.

However, in most applications, rather than systems of representatives at a
given distance, we would be more interested in systems of representatives whose
closest pairs are as separated as possible. Therefore, the design of approximation
algorithms for the latter problem seems a suitable alternative. Here, we consider
the problem of maximizing the distance of the closest pair in systems of rep-
resentatives in the plane with either the L∞ or the Euclidean L2 metric. The
subsets that we consider are (possibly intersecting) disks.

The geometric optimization problem under consideration finds applications
in cartography [7], graph drawing [8], and more generally in data visualization,
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partially supported by Cornelis Lely Stichting, NWO, and DIMACS.
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where the readability of the displayed data is a basic requirement, and often a
difficult task. In many cases, there are some restrictions on how and where each
object has to be drawn, as well as some freedom. For example, cartographers
improve the readability of a map by displacing some features with respect to their
real position. The displacement has to be small to preserve correctness, and the
problem can be abstracted as follows. We want to place a fixed number of points
(0-dimensional cartographic features) in the plane, but with the restriction that
each point has to lie inside a prespecified region. The regions may overlap, and
we want the placement that maximizes the distance between the closest pair.
The region where each point has to be placed is application dependent. We will
assume that they are given, and that they are disks.

Formulation of the problem. Given a distance d in the plane, consider the func-
tion D : (R2)n → R that gives the distance between a closest pair of n points

D(p1, . . . , pn) = min
i �=j

d(pi, pj).

Let B = {B1, . . . , Bn} be a collection of (possibly intersecting) disks in R2 under
the metric d. A feasible solution is a placement of points p1, . . . , pn with pi ∈ Bi.
We are interested in a feasible placement p∗

1, . . . , p
∗
n that maximizes D

D(p∗
1, . . . , p

∗
n) = max

(p1,...,pn)∈B1×···×Bn

D(p1, . . . , pn).

We use D(B) to denote this optimal value.
A t-approximation, with t ≥ 1, is a feasible placement p1, . . . , pn, with t ·

D(p1, . . . , pn) ≥ D(B). We will use B(p, r) to denote the disk of radius r centered
at p. Recall that under the L∞ metric, B(p, r) is an axis-aligned square centered
at p and side length 2r. We assume that the disk Bi is centered at ci and has
radius ri, so Bi = B(ci, ri).

Related work. The decision problem associated to our optimization one is the
original distant representatives problem: for a given value δ, is D(B) ≥ δ? Fiala et
al. [11, 12] showed that this problem is NP-hard in the Euclidean and Manhattan
metrics. Furthermore, by repeating at regular intervals their construction [11–
Figures 1 and 2], it follows from the slackness of the construction that, unless
NP = P , there is a certain constant T > 1 such that no T -approximation is
possible. See [13] for a similar argument related to the slackness. They also notice
that the one dimensional problem can be solved using the scheduling algorithm
by Simons [17].

Closely related are geometric dispersion problems: we are given a polygonal
region of the plane and we want to place n points on it such that the closest pair is
as far as possible. This problem has been considered by Baur and Fekete [3] (see
also [6, 10]), where both inapproximability results and approximation algorithms
are presented. Their NP-hardness proof and inapproximability results can easily
be adapted to show inapproximability results for our problem, showing also
that no polynomial time approximation scheme is possible, unless P = NP .
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Dispersion problems have also been considered in arbitrary metric spaces and
with various optimization functions; see [6, 14] and references therein.

In a more general setting, we can consider the following problem: given a
collection S1, . . . , Sn of regions in R2, and a function f : S1× · · · ×Sn → R that
describes the quality of a feasible placement (p1, . . . , pn) ∈ S1 × · · · × Sn, we
want to find a feasible placement p∗

1, . . . , p
∗
n such that

f(p∗
1, . . . , p

∗
n) = max

(p1,...,pn)∈S1×···×Sn

f(p1, . . . , pn).

Geometric dispersion problems are a particular instance of this type where we
want to maximize the function D over k copies of the same polygonal region.
Minimum diameter covering problems try to minimize the diameter of the place-
ment [2]. In [5], given a graph on the vertices p1, . . . , pn, placements that maxi-
mize the number of straight-line edges in a given set of orientations are consid-
ered.

Our results. The main idea in our approach is to consider an “approximate-
placement” problem in the L∞ metric: given a value δ that satisfies 2δ ≤ D(B),
we can provide a feasible placement p1, . . . , pn such that D(p1, . . . , pn) ≥ δ.
The proof can be seen as a suitable packing argument. This placement can be
computed in O(n

√
n log n) time using the data structure by Mortensen [16] and

the technique by Efrat et al. [9] for computing a matching in geometric settings.
See Sections 2 and 3 for details.

We then combine the “approximate-placement” algorithm with the geometric
features of our problem to get a 2-approximation in the L∞ metric. This is
done by a two-stage binary search on some special values by paying an extra
logarithmic factor; see Section 4.

Section 5 summarizes in L2 the results that are equivalent to those described
in L∞. In particular, the same idea of “approximate-placement” can be used
in the L2 metric, but the approximation ratio becomes 8/3 and the running
time increases to O(n2). Using binary search leads to an (8/3)-approximation
algorithm for the L2 metric.

However, when we restrict ourselves to congruent disks in L2, a trivial adapta-
tion of the techniques gives an approximation ratio of ∼ 2.2393. This is explained
in Section 6.

2 Placement Algorithm in L∞

Consider an instance B = {B1, . . . , Bn} of the problem in the L∞ metric, and
let δ∗ = D(B) be the maximum value that a feasible placement can attain.
We will consider the “approximate-placement” problem that follows: given a
value δ, we provide a feasible placement p1, . . . , pn such that, if δ ≤ 1

2δ∗ then
D(p1, . . . , pn) ≥ δ, and otherwise there is no guarantee on the placement. In
this section we present an algorithm and discuss its approximation performance,
while in next section we discuss a more efficient version of it.
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Let Λ = Z2, that is, the lattice Λ = {(a, b) | a, b ∈ Z}. For any δ ∈ R and
any point p = (px, py) ∈ R2, we define δp = (δpx, δpy) and δΛ = {δp | p ∈ Λ}.
Observe that δΛ is also a lattice. The reason to use this notation is that we can
use p ∈ Λ to refer to δp ∈ δΛ for different values of δ. An edge of the lattice δΛ
is a horizontal or vertical segment joining two points of δΛ at distance δ. The
edges of δΛ divide the plane into squares of side length δ, which we call the cells
of δΛ.

The idea is that whenever 2δ ≤ δ∗, the lattice points δΛ almost provide a
solution. However, we have to treat as a special case the disks with no lattice
point inside. More precisely, let Q ⊂ δΛ be the set of points that cannot be
considered as a possible placement because there is another already placed point
too near by. Initially, we have Q = ∅. If a disk Bi does not contain any point
from the lattice, there are two possibilities:

– Bi is contained in a cell C of δΛ; see Fig. 1 left. In this case, place pi := ci

in the center of Bi, and remove the vertices of the cell C from the set of
possible placements for the other disks, that is, add them to Q.

– Bi intersects an edge E of δΛ; see Fig. 1 right. In this case, choose pi on
E ∩ Bi, and remove the vertices of the edge E from the set of possible
placements for the other disks, that is, add them to Q.

Bi
p∗

i
Bi

δΛ

p∗
i

pi

pi Q

δΛ

Fig. 1. Special cases where the disk Bi does not contain any lattice point. Left: Bi is
fully contained in a cell of δΛ. Right: Bi intersects an edge of δΛ

We are left with disks, say B1, . . . , Bk, that have some lattice points inside.
Consider for each such disk Bi the set of points Pi := Bi∩(δΛ\Q) as candidates
for the placement corresponding to Bi. Observe that Pi may be empty if (Bi ∩
δΛ) ⊂ Q. We want to make sure that each disk Bi gets a point from Pi, and
that each point gets assigned to at most one disk Bi. We deal with this by
constructing a bipartite graph Gδ with B := {B1, . . . , Bk} as one class of nodes
and P := P1 ∪ · · · ∪Pk as the other class, and with an edge between Bi ∈ B and
p ∈ P whenever p ∈ Pi.

It is clear that a (perfect) matching in Gδ provides a feasible placement.
When a matching is not possible, the algorithm reports a feasible placement by
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B1

B2

B3

B4

B5

B6

B1
B4

B3

B2
B5

B6

p1

p2

p8

p1 p2

p3 p4 p5 p6

p7

p8

q1

q2

q1

q2

p5

p6

Q

Fig. 2. Example showing the main features of the placement algorithm in L∞

placing each point in the center of its disk. We call this algorithm Placement.
See Figure 2 for an example.

In any case, Placement always gives a feasible placement p1, . . . , pn, and we
can then compute the value D(p1, . . . , pn) finding a closest pair in the placement.
Below we show that, whenever 2δ ≤ δ∗, Placement(δ) gives a placement whose
closest pair is at distance at least δ. In particular, this implies that if Bi∩δΛ �= ∅
but Pi = Bi ∩ (δΛ \Q) = ∅, then there is no matching in Gδ because the node
Bi has no edges, and so we can conclude that 2δ > δ∗.

Definition 1. In the L∞ metric, Placement(δ) succeeds if the computed place-
ment p1, . . . , pn satisfies D(p1, . . . , pn) ≥ δ. Otherwise, Placement(δ) fails.

Lemma 1. If 2δ ≤ δ∗, then Placement(δ) succeeds.

Proof. The proof is divided in two steps. Firstly, we will show that if 2δ ≤ δ∗ then
the graph Gδ has a matching. Secondly, we will see that if p1, . . . , pn is a place-
ment computed by Placement(δ) when 2δ ≤ δ∗, then indeed D(p1, . . . , pn) ≥ δ.

Consider an optimal placement p∗
1, . . . , p

∗
n. The points that we added to Q due

to a disk Bi are in the interior of B(p∗
i , δ

∗/2) because of the following analysis:

– If Bi ∩ δΛ = ∅ and Bi is completely contained in a cell C of δΛ, then p∗
i is

in C, and C ⊂ B(p∗
i , δ) ⊂ B(p∗

i , δ
∗/2); see Figure 1 left.

– If Bi ∩ δΛ = ∅ and there is an edge E of δΛ such that Bi ∩ E �= ∅, then
E ⊂ B(p∗

i , δ) ⊂ B(p∗
i , δ

∗/2); see Figure 1 right.

The interiors of the disks (in L∞) B(p∗
i , δ

∗/2) are disjoint, and we can
use them to construct a matching in Gδ as follows. If Bi ∩ δΛ �= ∅, then
B(p∗

i , δ
∗/2)∩Bi contains some lattice point pi ∈ δΛ. Because the interiors of the

disks B(p∗
i , δ

∗/2) are disjoint, we have pi �∈ Q and pi ∈ Pi. We cannot directly
add the edge (Bi, pi) to the matching that we are constructing because it may
happen that pi is on the boundary of B(p∗

i , δ
∗/2)∩Bi, but also on the boundary
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of B(p∗
j , δ

∗/2) ∩ Bj . However, in this case, B(p∗
i , δ

∗/2) ∩ Bi ∩ δΛ contains an
edge of δΛ inside. If we match each Bi to the lexicographically smallest point
in B(p∗

i , δ
∗/2) ∩ Bi ∩ δΛ, then, because the interiors of disks B(p∗

i , δ
∗/2) are

disjoint, each point is claimed by at most one disk. This proves the existence of
a matching in Gδ provided that 2δ ≤ δ∗.

For the second part of the proof, let pi, pj be a pair of points computed by
Placement(δ). We want to show that pi, pj are at distance at least δ. If both
were computed by the matching in Gδ, they both are different points in δΛ, and
so they are at distance at least δ. If pi was not placed on a point of δΛ (at ci or
on an edge of δΛ), then the lattice points closer than δ to pi were included in
Q, and so the distance to any pj placed during the matching of Gδ is at least δ.
If both pi, pj were not placed on a point of δΛ, then Bi, Bj do not contain any
point from δΛ, and therefore ri, rj < δ/2. Two cases arise:

– If both Bi, Bj do not intersect an edge of δΛ, by the triangle inequality we
have d(pi, pj) ≥ d(p∗

i , p
∗
j )−d(pi, p

∗
i )−d(pj , p

∗
j ) > δ∗−δ/2−δ/2 ≥ δ, provided

that 2δ ≤ δ∗.
– If one of the disks, say Bi, intersects an edge E of δΛ, then Bi is contained

in the two cells of δΛ that have E as an edge. Let C be the six cells of
δΛ that share a vertex with E. If Bj does not intersect any edge of δΛ,
then Bj ∩ C = ∅ because otherwise d(p∗

i , p
∗
j ) < 2δ, and so d(pi, pj) ≥ δ.

If Bj intersects an edge E′ of δΛ, we have E ∩ E′ = ∅ because otherwise
d(p∗

i , p
∗
j ) < 2δ. It follows that d(pi, pj) ≥ δ.

�

Notice that, in particular, if rmin is the radius of the smallest disk and we
set δ = (rmin/

√
n), then the nodes of type Bi in Gδ have degree n, and there is

always a matching. This implies that δ∗ = Ω(rmin/
√

n).
Observe also that whether Placement fails or succeeds is not a mono-

tone property. That is, there may be values δ1 < δ2 < δ3 such that both
Placement(δ1) and Placement(δ3) succeed, but Placement(δ2) fails. This
happens because for values δ ∈ ( δ∗

2 , δ∗], we do not have any guarantee on what
Placement(δ) does.

The algorithm can be adapted to compute Placement(δ+ε) for an infinitesi-
mal ε > 0 because only the points of δΛ lying on the boundaries of B1, . . . , Bn are
affected. Therefore, for an infinitesimal ε > 0, we can decide if Placement(δ+ε)
succeeds or fails.

Observation 2. If Placement(δ) succeeds for B, but Placement(δ) fails for
a translation of B, then δ ≤ δ∗ < 2δ and we have a 2-approximation.

If for some δ > δ′, Placement(δ) succeeds, but Placement(δ′) fails, then
δ∗ < 2δ′ < 2δ and we have a 2-approximation.

If Placement(δ) succeeds, but Placement(δ + ε) fails for an infinitesimal
ε > 0, then δ∗ ≤ 2δ and we have a 2-approximation.
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3 Efficiency of the Placement Algorithm in L∞

The algorithm Placement, as stated so far, is not strongly polynomial because
the sets Pi = Bi ∩ (δΛ \Q) can have arbitrarily many points, depending on the
value δ. However, when Pi has more than n points, we can just take any n of
them. This is so because a node Bi with degree at least n is never a problem
for the matching: if Gδ \ Bi does not have a matching, then Gδ does not have
it either; if Gδ \Bi has a matching M , then at most n− 1 nodes from the class
P participate in M , and one of the n edges leaving Bi has to go to a node in P
that is not in M , and this edge can be added to M to get a matching in Gδ.

For a disk Bi we can decide in constant time if it contains some point from
the lattice δΛ: we round its center ci to the closest point p of the lattice, and
depending on whether p belongs to Bi or not, we decide. Each disk Bi adds at
most 4 points to Q, and so |Q| ≤ 4n. We can construct Q and remove repetitions
in O(n log n) time.

If a disk Bi has radius bigger than 3δ
√

n, then it contains more than 5n
lattice points, that is, |Bi ∩ δΛ| > 5n. Because Q contains at most 4n points, Pi

has more than n points. Therefore, we can shrink the disks with radius bigger
than 3δ

√
n to disks of radius exactly 3δ

√
n, and this does not affect to the

construction of the matching. We can then assume that each disk Bi ∈ B has
radius O(δ

√
n). In this case, each Bi contains at most O(n) points of δΛ, and so

the set P =
⋃

i Pi has O(n2) elements.
In fact, we only need to consider a set P with O(n

√
n) points. The idea is

to divide the disks B into two groups: the disks that intersect more than
√

n
other disks, and the ones that intersect less than

√
n other disks. For the former

group, we can see that they bring O(n
√

n) points in total to P . As for the latter
group, we only need to consider O(

√
n) points per disk.

Lemma 3. It is sufficient to consider a set P with O(n
√

n) points. Moreover,
we can construct such a set P in O(n

√
n log n) time.

We are left with the following problem: given a set P of O(n
√

n) points, and
a set B of n disks, find a maximum matching between P and B such that a point
is matched to a disk that contains it. However, the graph Gδ does not need
to be constructed explicitly because its edges are implicitly represented by the
disk-point containment. This type of matching problem, when both sets have
the same cardinality, has been considered by Efrat et al. [9]. Although in our
setting one of the sets may be much larger than the other one, we can make
minor modifications to the algorithm in [9] and use the data structure designed
by Mortensen [16] to get the following result.

Lemma 4. In L∞, Placement can be adapted to run in O(n
√

n log n) time.
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4 Approximation Algorithms for L∞

We want a value δ̃ such that Placement(δ̃) succeeds, but Placement(δ̃ + ε)
fails for an infinitesimally small ε > 0; then δ̃ is a 2-approximation because of
Observation 2. General techniques based on Megiddo’s parametric search [15] are
not very fruitful in this case because the known parallel algorithms for computing
maximum matchings do not have an appropriate tradeoff between the number
of processors and the running time.

Instead, we can use the geometric characteristics of our problem to find a 2-
approximation δ̃ in O(n

√
n log2 n) time. The idea is to consider for which values

δ the algorithm changes its behavior, and use it to narrow down the interval
where δ̃ can lie. First, we state how to solve a special type of instances, and then
present the main result of this section.

Lemma 5. Let B be an instance consisting of m disks such that each disk Bi ∈ B
has radius O(r

√
k), and assume that there is a disk B of radius R = O(mr

√
k)

enclosing all the disks in B. If Placement( r
3
√

k
) succeeds, then we can compute

in O(m
√

m log2 mk) time a placement p1, . . . , pm with pi ∈ Bi that yields a
2-approximation of D(B).

Proof. (Sketch) The proof is divided into three parts. Firstly, we show that
we can assume that the origin is placed at the center of the enclosing disk B.
Secondly, we narrow down our search space to an interval [δ1, δ2] such that
Placement(δ1) succeeds but Placement(δ2) fails. Finally, we consider all the
critical values δ ∈ [δ1, δ2] for which the flow of control of Placement(δ) is
different than for Placement(δ + ε) or Placement(δ − ε). The important
observation is that the values δ1, δ2 are such that not many critical values are in
the interval [δ1, δ2].

Let B′ be a translation of B such that the center of the enclosing disk B is at
the origin. By hypothesis, Placement( r

3
√

k
) for B succeeds. If Placement( r

3
√

k
)

for B′ fails, then Placement( r
3
√

k
) for B gives a 2-approximation due to Obser-

vation 2, and we are done. This finishes the first part of the proof.
As for the second part, consider the horizontal axis h. Because the enclosing

disk B has radius R = O(mr
√

k), the lattice ( r
3
√

k
)Λ has O(mk) points in B∩h.

Equivalently, we have t = max{z ∈ Z s.t.( r
3
√

k
)(z, 0) ∈ B} = 	 3R

√
k

r 
 = O(mk).
In particular, R

t+1 ≤ r
3
√

k
.

If Placement( R
t+1 ) fails, then Placement( r

3
√

k
) is a 2-approximation due

to Observation 2. So we can assume that Placement( R
t+1 ) succeeds. We can

also assume that Placement(R
1 ) fails, as otherwise B consists of only one disk.

We perform a binary search in Z ∩ [1, t + 1] to find a value t′ ∈ Z such
that Placement(R

t′ ) succeeds but Placement( R
t′−1 ) fails. We can do this with

O(log t) = O(log mk) calls to Placement, each taking O(m
√

m log m) time due
to Lemma 4, and we have spent O(m

√
m log2 mk) time in total. Let δ1 := R

t′

and δ2 := R
t′−1 . This finishes the second part of the proof.
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Before we start the third part, let us state, without proof, the property of
δ1, δ2 that we will use later. If p ∈ Λ is such that δ1p is in the interior of B, and
Cp is the union of all four cells of δ1Λ having δ1p as a vertex, then δ2p ∈ Cp,
and more generally, δp ∈ Cp for any δ ∈ [δ1, δ2]. Therefore, if for a point p ∈ Λ
there is a δ ∈ [δ1, δ2] such that δp ∈ ∂Bi, then ∂Bi must intersect Cp.

We are ready for the third part of the proof. Consider the critical values
δ ∈ [δ1, δ2] for which the flow of control of the Placement changes. They are
the following:

– A point p ∈ Λ such that δp ∈ Bi but (δ + ε)p /∈ Bi or (δ − ε)p �∈ Bi for an
infinitesimal ε > 0. That is, δp ∈ ∂Bi.

– Bi intersects an edge of δΛ, but not of (δ + ε)Λ (δ − ε)Λ for an infinitesimal
ε > 0.

Because of the property of δ1, δ2 stated above, only the vertices V of cells of
δ1Λ that intersect ∂Bi can change the flow of control of Placement. In the L∞
metric, because the disks are axis-aligned squares, the vertices V are distributed
along two axis-aligned rectangles, and each disk Bi induces O(1) such critical
values Δi changing the flow of control of Placement.

We can compute all the critical values Δ =
⋃m

i=1 Δi and sort them in
O(m log m) time. Using a binary search on Δ, we find δ3, δ4 ∈ Δ, with δ3 < δ4,
such that Placement(δ3) succeeds but Placement(δ4) fails. Because |Δ| =
O(m), this can be done in O(m

√
m log2 m) time with O(log m) calls to Place-

ment. The flow of control of Placement(δ4) and of Placement(δ3 + ε) are
the same. Therefore, we know that Placement(δ3 + ε) also fails, and conclude
that Placement(δ3) yields a 2-approximation because of Observation 2. �

Theorem 1. Let B = {B1, . . . , Bn} be a collection of disks in the plane with the
L∞ metric. We can compute in O(n

√
n log2 n) time a placement p1, . . . , pn with

pi ∈ Bi that yields a 2-approximation of D(B).

Proof. Let us assume that r1 ≤ · · · ≤ rn, that is, Bi is smaller than Bi+1.
Consider the values Δ = { r1

3
√

n
, . . . , rn

3
√

n
, 4rn}. We know that Placement( r1

3
√

n
)

succeeds, and we can assume that Placement(4rn) fails; if it would succeed,
then the disks in B would be disjoint, and placing each point pi := ci would give
a 2-approximation.

We use Placement to make a binary search on the values Δ and find a value
rmax such that Placement( rmax

3
√

n
) succeeds, but either Placement( rmax+1

3
√

n
)

fails or rmax = rn. This takes O(n
√

n log n) time, and two cases arise:

– If Placement(4rmax) succeeds, then rmax �= rn. In the case that 4rmax >
rmax+1

3
√

n
, we have a 2-approximation due to Observation 2. In the case that

4rmax ≤ rmax+1

3
√

n
, consider any value δ ∈ [4rmax, rmax+1

3
√

n
]. On the one hand,

the balls Bmax+1, . . . , Bn are not problematic because they have degree n
in Gδ. On the other hand, the balls B1, . . . , Bmax have to be disjoint be-
cause δ∗ ≥ 4rmax, and they determine the closest pair in Placement(δ).
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In this case, placing the points p1, . . . , pmax at the centers of their corre-
sponding disks, computing the distance δ̃ of their closest pair, and using
Placement(δ̃) for the disks Bmax+1, . . . , Bn provides a 2-approximation.

– If Placement(4rmax) fails, then we know that for any δ ∈ [ rmax

3
√

n
, 4rmax]

the disks Bj with rj

3
√

n
≥ 4rmax have degree at least n in Gδ. We shrink

them to have radius 12rmax
√

n, and then they keep having degree at least n
in Gδ, so they are not problematic for the matching. We also use B for the
new instance (with shrunk disks), and we can assume that all the disks have
radius O(12rmax

√
n) = O(rmax

√
n).

We group the disks B into clusters B1, . . . ,Bt as follows: a cluster is a con-
nected component of the intersection graph of the disks B(c1, r1+4rmax), . . . ,
B(cn, rn + 4rmax). This implies that the distance between different clusters
is at least 4rmax, and that each cluster Bj can be enclosed in a disk of radius
O(rmax|Bj |

√
n).

For each subinstance Bj , we can use Lemma 5, where m = |Bj | and k = n,
and compute in O(|Bj |

√|Bj | log2(|Bj |n)) time a placement yielding a 2-
approximation of D(Bj). Joining all the placements we get a 2-approximation

of D(B), and we have used
∑t

j=1 O
(
|Bj |
√|Bj | log2(|Bj |n)

)
= O(n

√
n log2 n)

time overall. �

5 Analogous Results in L2

The rest of the paper studies how the L2 metric changes the approximation ratio
and running time of the algorithms studied for the L∞ metric. We just give the
main observations, and refer to the full version for details.

5.1 Placement Algorithm in L2

For the L∞ metric, we used the optimal packing of disks that is provided by
an orthogonal grid. For the Euclidean L2 metric we will consider the regular
hexagonal packing of disks, given by Λ := {(a + b

2 , b
√

3
2 ) | a, b ∈ Z}. For disks of

radius δ/2, the hexagonal packing is provided by placing the disks centered at
δΛ. The edges of δΛ are the segments connecting each pair of points in δΛ at
distance δ. They decompose the plane into equilateral triangles of side length δ,
which are the cells of δΛ.

Consider a version of Placement using the new lattice δΛ and modifying it
slightly for the cases when Bi contains no lattice point:

– If Bi is contained in a cell C, place pi := ci and add the vertices of C to Q;
see Figure 3a.

– If Bi intersects some edges of δΛ, let E be the edge that is closest to ci.
Then place pi at the projection of ci onto E, and add the vertices of E to
Q; see Figure 3b.
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δΛ

pi

pi

pi

pj

Bi Bi

Bi
Bj

(a) (b) (c)

Q

δΛ

Fig. 3. Cases and properties of Placement for the L2 metric. (a) Placement when Bi is
fully contained in a cell. (b) Placement when Bi intersects an edge: we project the center
ci onto the closest edge. (c) A case showing that the closest pair in Placement(δ) may
be at distance δ

√
3

2

Observe that, in this case, the distance between a point placed on an edge
and a point in δΛ \ Q may be δ

√
3

2 ; see Figure 3c. We modify accordingly the
criteria of Definition 1 regarding when Placement succeeds, and then we state
the result corresponding to Lemma 1.

Definition 2. In the L2 metric, Placement(δ) succeeds if the computed place-
ment p1, . . . , pn satisfies D(p1, . . . , pn) ≥ δ

√
3

2 . Otherwise, Placement(δ) fails.

Lemma 6. If 4δ√
3
≤ δ∗, then Placement(δ) succeeds.

Observe that now, if Placement(δ) succeeds, but Placement(δ + ε) fails
for an infinitesimal ε > 0, then we are getting an approximation ratio of 8/3: we
have δ ≥ δ∗√

3
4 , and Placement(δ) gives a placement p1, . . . , pn that satisfies

D(p1, . . . , pn) ≥ δ
√

3
2 ≥ 3δ∗

8 .

5.2 Approximation Algorithms in L2

Lemma 3 also applies to the L2 metric. However, the proof of Lemma 4 relies
on some data structures that do not carry over to L2. Instead we can show the
following result, whose running time depends on whether the original disks are
congruent or not.

Lemma 7. The Algorithm Placement can be adapted to run in O(n1.5+ε)
time. When all the disks are congruent, it can be adapted to run in O(n

√
n log n)

time.

The proof of Lemma 5 is not valid for the L2 metric because it relies on the
fact that disks in the L∞ metric are squares. Instead, we can solve in quadratic
time the type of instances that are considered in Lemma 5. This leads to the
following result, where we spend roughly O(

√
n) times more time than in the

L∞ case (Theorem 1).

Theorem 2. Let B = {B1, . . . , Bn} be a collection of disks in the plane with the
L2 metric. We can compute in O(n2) time a placement p1, . . . , pn with pi ∈ Bi

that yields an 8
3 -approximation of D(B).
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6 Congruent Disks in L2

When the disks B1, . . . , Bn are all congruent, say, of diameter one, we can im-
prove the approximation ratio in Theorem 2. For general disks, the problematic
cases are those balls that do not contain any lattice point. But when all the disks
are of diameter one, we can rule out those cases.

Assume 1 ≤ δ∗ ≤ 2 and take δ such that δ ≤ −√
3+

√
3δ∗+

√
3+2δ∗−δ∗2

4 . When
running Placement(δ) under this hypothesis, it is possible to show that Q = ∅
and that the graph Gδ has a matching. This requires some non-trivial geometric
considerations; see the full version of the paper.

In this case, if p1, . . . , pn is the placement computed by Placement(δ), we
have D(p1, . . . , pn) ≥ δ because Q = ∅ and so all the points pi ∈ δΛ. Therefore,
for 1 ≤ δ∗ ≤ 2, we can get an approximation ratio of

δ∗

δ
≥ 4δ∗

−√3 +
√

3δ∗ +
√

3 + 2δ∗ − δ∗2
.

For any δ∗ ≤ 1, also some geometric considerations imply that Placement
gives a 2-approximation.

On the other hand, we have the trivial approximation algorithm Centers
consisting of placing each point pi := ci, which gives a δ∗

δ∗−1 -approximation when
δ∗ > 1. In particular, Centers gives a 2-approximation when δ∗ ≥ 2.

1.5 1.6 1.7 1.8 1.9

2.2

2.4

2.6

2.8

3

Fig. 4. Approximation ratios for both approximation algorithms as a function of the
optimum δ∗

The idea is that the performances of Placement and Centers are re-
versed for different values δ∗ in the interval [1, 2]. For example, when δ∗ = 2,
the algorithm Placement gives a 4√

3
-approximation, while Centers gives a

2-approximation because the disks need to have disjoint interiors to achieve
δ∗ = 2. But for δ∗ = 1, the performances are reversed: Placement gives a
2-approximation, while Centers does not give any constant factor approxima-
tion.
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The approximation ratios of both algorithms are plotted in Figure 4. Apply-
ing both algorithms and taking the best of both solutions, we get an approxi-
mation ratio that is the minimum of both approximation ratios, which attains a
maximum of

α := 1 +
13√

65 + 26
√

3
∼ 2.2393.

Theorem 3. Let B = {B1, . . . , Bn} be a collection of congruent disks in the
plane with the L2 metric. We can compute in O(n2) time a placement p1, . . . , pn

with pi ∈ Bi that yields a ∼ 2.2393-approximation of D(B).
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Abstract. We provide a new technique to derive group strategyproof
mechanisms for the cost-sharing problem. Our technique is simpler and
provably more powerful than the existing one based on so called cross-
monotonic cost-sharing methods given by Moulin and Shenker [1997].
Indeed, our method yields the first polynomial-time mechanism for the
Steiner tree game which is group strategyproof, budget balance and also
meets other standard requirements (No Positive Transfer, Voluntary Par-
ticipation and Consumer Sovereignty). A known result by Megiddo [1978]
implies that this result cannot be achieved with cross-monotonic cost-
sharing methods, even if using exponential-time mechanisms.

1 Introduction

Consider a service providing company P with a set of possible customers, also
called users, U . For each subset S ⊆ U of users, CP(S) denotes the cost incurred
by the company P to jointly service the users in S. The function CP(·) is usually
termed the cost function. A typical scenario is that of company P broadcasting
some kind of transmission (e.g., movies, sport events, news, etc) over a given
network: in this case, CP(S) is the cost of implementing a multicast tree con-
necting a source node s to all users is S. Each user i valuates the transmission
an amount vi: this value quantifies how much user i likes the transmission (or
how much he/she would pay for it). A key point is that vi is a property of user
i (and not of the network) and, thus, this value is known to i only. If user i
is required to pay pi for receiving the transmission, then her utility is equal to
vi−pi. The utility is naturally what each user i tries to maximize. Users may act
selfishly and, thus, a user i may misreport her valuation at some other number
bi. (Consider a simple mechanism which charges to every user i an amount equal
to her reported valuation bi).
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A cost-sharing mechanism should decide which user S should receive the
transmission and at which price. The mechanism is said strategyproof if, for
each user i, revealing the true value vi is a dominant strategy: that is, reporting
any bi �= vi cannot improve the utility of i (see Sect. 2 for a formal definition).
The mechanism is group strategyproof if this holds also for coalitions of users.
The mechanism is budget balance if the total amount of money payed by the
users equals the servicing cost CP(S). Finally, a mechanism is efficient if it max-
imizes, over all subsets S, the sum of the valuations of users in S minus the cost
CP(S).

A fundamental result by Moulin and Shenker [8, 7] shows that the existence
of a so called cross-monotonic cost-sharing method (see Sect. 2 for a formal
definition) for CP(·) gives rise to a group strategyproof and budget balance
mechanism. Moreover, if CP(·) is submodular (see the definition in Sect. 2.1),
the converse holds as well. These results point all in the direction of cross-
monotonic cost-sharing methods: on the one hand, no other technique is known
to derive such mechanisms; on the other hand, the “converse” part of Moulin and
Shenker’s theorem says that, for submodular functions, these type of mechanisms
capture all possible ones.

Unfortunately, meeting the cross-monotonicity requirement is often far from
trivial: some (optimal) cost functions do not admit such methods [6]; others
require a rather involved use of primal-dual algorithms [3, 9, 5, 1]; for others,
only some sort of approximation of the budget balance condition is guaranteed
(e.g., the mechanism may create some surplus or recover only a fraction of the
cost) [9, 5, 1].

In this work we provide a more powerful method to derive such mechanisms
by introducing the concept of self cross-monotonic cost-sharing method (see
Sect. 3). Our main result is that, given any such cost-sharing method, it is possi-
ble to obtain group strategyproof mechanisms. The resulting technique extends
the one by Moulin and Shenker and is provably more powerful: it indeed applies
to some optimal cost functions for which the method by Moulin and Shenker can-
not be used and/or gives simpler constructions of the mechanisms (see Sect.s 2.1
and 2.2 for a more detailed discussion of previous and our results).

2 Model

We are given a set U of n users. Depending on the problem instance at hand,
for every Q ⊆ U , and for every feasible solution TQ which allows to provide the
service to users in Q (e.g., a multicast tree connecting a source node s to all users
in Q), we denote by COST(TQ) the cost of this solution.1 Hence, for a service
providing company P that decides to service Q by implementing solution TQ, we
have a cost CP(Q) = COST(TQ).

1 A formal definition should be COST(Q, G) since the cost depends on the instance.
However, for the sake of clarity, we will omit ‘G’ whenever this will be clear from
the context.
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Each user is a selfish agent reporting some (not necessarily true) valuation
bi; the true value vi is privately known to agent i. Based on the reported values
b = (b1, b2, . . . , bn) a mechanism M = (A, P ) uses algorithm A to compute the
following:

– A subset Q(b) ⊆ U of users to be serviced;
– A feasible solution TQ(b) to be implemented in order to provide the service

to the set Q(b); solution TQ(b) does not provide the service to any j /∈ Q(b).

For the sake of convenience, one can imagine that an algorithm A(·) is used
by M in order to compute TQ(b) once a set Q(b) has been selected, that is,
TQ(b) = A(Q(b)). (For instance, A(·) may be a multicast algorithm computing a
tree connecting a source node s to a subset Q of the nodes of a network.) In this
case, we let CA(Q(b)) := COST(A(Q(b))).

In addition, for every user i ∈ Q(b), the mechanism computes the cost P i(b)
that user i must pay for getting the service, with P = (P 1, P 2, . . . , Pn). Hence,
the utility of agent i when she reports bi, and the other agents report b−i :=
(b1, . . . , b−i, bi+1, . . . , bn), is equal to

ui(bi, b−i) := vi · σi(Q(bi, b−i))− P i(bi, b−i),

where (x, b−i) = (b1, . . . , bi−1, x, bi+1, . . . , bn) and σi(X) equals 1 if i ∈ X, and 0
otherwise. In the sequel, for every C ⊆ U and any two vectors x and y of length
n, (xC , y−C) denotes the vector z = (z1, . . . , zn) such that zi = xi if i ∈ C and
zi = yi if i /∈ C.

There is a number of natural constraints/goals that, for every problem in-
stance G, a mechanism M = (A, P ) should satisfy/meet:

1. Cost Optimality (CO). Let Copt(Q) denote the minimum cost required
to service all users in Q, for every Q ⊆ U . We require that the computed
solution TQ(b) is optimal w.r.t. the set Q(b), that is, CA(Q(b)) = Copt(Q(b)).

2. No Positive Transfer (NPT). No user receives money from the mecha-
nism, i.e., P i(·) ≥ 0.

3. Voluntary Participation (VP). We never charge an user an amount of
money grater than her reported valuation, that is, ∀bi,∀b−i bi ≥ P i(bi, b−i).
In particular, a user has always the option to not paying for a service for
which she is not interested. Morever, P i(b) = 0, for all i /∈ Q(b), i.e., only
the users getting the service will pay.

4. Consumer Sovereignty (CS). Every user is guaranteed to get the service
if she reports a high enough valuation.

5. Budget Balance (BB).
(a) Cost recovery.

∑
i∈Q(b) P i(b) ≥ CA(Q(b)), i.e., the cost of the com-

puted solution is recovered from all the users being serviced;
(b) Competitiveness.

∑
i∈Q(b) P i(b) ≤ CA(Q(b)), i.e., no surplus is cre-

ated. If some surplus were created, then a competitor may offer the
same service at a better price.
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6. Group Strategyproofness. We require that a user i ∈ U that misreport
her valuation (i.e., bi �= vi) cannot improve her utility (strategyproofness or
truthfulness) nor improve the utility of other users without worsening her
own utility (otherwise, a coalition C containing i would secede). Consider a
coalition C ⊆ U of users. Let bi = vj for all j /∈ C. The group strategyproof-
ness requires that if the inequality

vi · σi(Q(bC , v−C))− P i(bC , v−C) ≥ vi · σi(Q(vC , v−C))− P i(vC , v−C) (1)

holds for all i ∈ C then it must hold with equality for all i ∈ C as well.

A cost-sharing method is a function ξ(·) which distributes the cost CA(·) to
the users that get the service. Intuitively speaking, we will use the function ξ(·)
in order to define the payments P i(·). More formally, ξ(·) takes two arguments:
a set of users Q and a user i and returns a nonnegative real number satisfying
the following:

if i /∈ Q then ξ(Q, i) = 0 and (2)∑
i∈Q

ξ(Q, i) = CA(Q). (3)

Observe that, if we take P i(b) := ξ(Q(b), i), then the payments recover ex-
actly the cost CA(Q(b)) from all and only users in Q(b). Also the NPT condition
holds. The other requirements depend on how the mechanism selects Q(b) and
TQ(b).

In the context of multicast routing, we are given a weighted undirected graph
G = (U ∪ {s}, E, c), where s /∈ U is the source node and ce is the cost of using
link e ∈ E. A feasible solution is a pair TQ = (Q, T ), where T is a tree connecting
s to a subset Q of users contained in T . The corresponding cost is the weight of
T , i.e.,

∑
e∈T ce. The optimal cost function Copt(Q) to service Q is the cost of

an optimal Steiner tree of G connecting s to Q, thus possibly containing some
Steiner nodes in U \ Q. This is the Steiner tree game and we let σi(TQ) = 1 if
and only if i ∈ Q. In the minimum spanning tree game the feasible solution is
any spanning tree TQ containing s and the set Q only.
Approximation Concepts. The use of optimal cost functions Copt(·) for the given
problem may suffer from the following drawbacks: (1) there may not exists a
cross-monotonic cost-sharing method, and (2) computing a solution having that
cost may be NP-hard. Therefore, one considers the effects of using approximation
algorithms on the CO and the BB conditions.

Let M = (A, P ) be a mechanism whose cost function is CA(·). Mechanism M
is α-approximate BB if it is cost recovery for CA(·) and α-competitive, that is,∑

i∈U P i(b) ≤ α ·Copt(Q(b)). A β-surplus mechanism M satisfies
∑

i∈U P i(b) ≤
(1 + β) · CA(Q(b)). A ρ-recovery mechanism guarantees that

∑
i∈U P i(b) ≥ ρ ·

CA(Q(b)), for some ρ ≤ 1. Clearly, if A is an α-approximation algorithm and the
mechanism is 0-surplus, then it is also α-approximate BB. The converse does
not always hold as an α-approximate BB mechanism may not be 0-surplus. A
β-cost-sharing method ξ(·) satisfies Eq. 2 and the following relaxation of Eq. 3:
CA(Q) ≤∑i∈Q ξ(Q, i) ≤ β · CA(Q).
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2.1 Previous Work

A fundamental result by Moulin and Shenker states that, if a cost-sharing
cross-monotonic method for CA(·) exists, then it is possible to define a group
strategyproof mechanism (see Theorem 3): a cost-sharing method ξ(·) is cross-
monotonic if, for every Q′ ⊂ Q ⊆ U , ξ(Q′, i) ≥ ξ(Q, i), for all i ∈ Q′. The
converse of their result also holds whenever CA(·) is submodular [8, 7], that is,
CA(∅) = 0 and, for any two subsets of users Q1 and Q2, it holds that

CA(Q1) + CA(Q2) ≥ CA(Q1 ∪Q2) + CA(Q1 ∩Q2).

The Shapley value for multicast routing [11] and the egalitarian method due
to Dutta and Ray [2] are just two examples of cost-sharing methods which, for
functions that are nondecreasing2 and submodular, are cross monotonic.

The existence of a cross-monotonic method can be related to the core concept
(see e.g. [3] for a definition): if the core of CA(·) is empty, then no cross-monotonic
cost-sharing method ξ(·) for this cost function exists.

Megiddo proved that the optimal cost function Copt(·) for the Euclidean
Steiner tree game has an empty core [6]. Kent and Skorin-Kapov provided the
first cross-monotonic cost-sharing method for the minimum spanning tree game
[4]. A more general approach has been given by Jain and Vazirani that use
primal-dual methods in order to obtain a family of polynomial-time computable
cross-monotonic methods [3]. These results yield, for the case of metric graphs,
a 2-approximate BB, 0-surplus, group strategyproof mechanism for the Steiner
tree and for the TSP games. The mechanism also meets NPT, VP and CS.

Biló et al [1] considered the muticast routing game in wireless networks.
They proved that the resulting optimal cost function has an empty core even
for d-dimensional Euclidean instances, for d ≥ 2. Moreover, upon the results
for the MST game, they build a 2(3d− 1)-approximate BB, group strategyproof
mechanism which also meets NPT, VP and CS. This mechanism, however, is
not 0-surplus.

2.2 Our Contribution

In this work, we first show how to get around the difficulties of dealing with cross-
monotonic cost-sharing methods by providing a new technique for obtaining
group strategyproof cost-sharing mechanisms. In particular, we prove that the
a weaker property (which we call self cross-monotonicity– see Def. 2) suffices
(Theorem 2). We prove the following results showing that our method is simpler
and more powerful than the one by Moulin and Shenker [8, 7]:

– Self cross-monotonic methods for CA(·) can be trivially obtained whenever
the algorithm A is reasonable (see Def. 3).
The resulting mechanism MA satisfies the NPT, VP, CS, cost recovery, is
0-surplus and, if A is an (polynomial-time) α-approximation algorithm, then
MA is (polynomial-time) α-approximate BB (Theorem 2).

2 A function CA(·) is nondecreasing if, for every Q ⊂ Q′ ⊆ U , CA(Q) ≤ CA(Q′).
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– Our method gives the first polynomial-time mechanism for the Steiner tree
game which is group strategyproof, meets NPT, VP, CS and, more impor-
tantly, is BB (Corollary 1). Notice that the latter property implies that we
are able to build a multicast tree which is optimal for the chosen receivers
Q(b), that is, CA(Q(b)) = Copt(Q(b)).

Besides the improvement over the 2-approximate BB mechanism in [3], the
fact that our mechanism is BB is somewhat surprising: indeed, the result of
Megiddo [6] implies that our result cannot be achieved using cross-monotonic
methods; moreover, the NP-hardness of the underlying problem (i.e., given Q ⊂
U , find a minimum cost Steiner tree) seems to require α-approximate BB if
we aim at polynomial-time mechanisms (see e.g. [3]). This intuition is wrong!
Clearly, our result does not imply P = NP since our mechanism is “driven”
through a family of sets Q0, Q1, . . . , Qn for which an optimal Steiner tree does
not use any Steiner node (thus solvable in polynomial-time). We accomplish this
by relating the sets Qj ’s to the execution of Prim’s MST algorithm (Theorem 4).

These results already prove that focusing (only) on cross-monotonic methods
may be the “wrong” thing to do. We continue along this line and consider the
wireless multicast game [1], another problem for which our method is provably
better. We indeed obtain the following results on it:

– A polynomial-time mechanism which is (3d− 1)-approximate BB, 0-surplus,
group strategyproof, and meets NPT, VP, and CS (Theorem 5). This im-
proves over the 2(3d − 1)-approximate BB mechanism in [1] which is not
0-surplus.

– A wide class of mechanisms for this game cannot be 0-surplus. This class
includes the mechanism by Biló et al and, for certain “bad” instances, the
surplus increases exponentially in d (for d = 1 and d = 2 it cannot be smaller
than 1 and 5, respectively).

Mechanism in this class are those which use a multicast algorithm A for
which an A-bad instance G exists (see Def. 4). These algorithms are not opti-
mal (Theorem 8) and the cost function CA(·) is not submodular (Theorem 9).
Hence, the “inverse” of the result by Moulin and Shenker [8] does not apply to
such functions CA(·). Therefore, it is possible to have BB mechanisms which do
not use cross-monotonic cost-sharing methods. Finally, we observe that there is
no equivalence between bad algorithms A and the non submodularity of CA(·):
indeed, there exists an instance G for which CMST(·) is not submodular, while
G is not MST-bad (Theorem 10).

Paper Organization. We briefly recall the result by Moulin and Shenker in
Sect. 3, and provide our extension in Sect.s 3.1-3.2; We apply our result to the
Steiner tree game in Sect. 3.3; Wireless muticast is considered in Sect. 4.

Due to lack of space some proofs are omitted. The interested reader can find
them in [10].
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3 A New Method for Cost Sharing

Moulin and Shenker [8, 7] provide an elegant solution by considering the following
scheme for obtaining mechanisms:

Mechanism M(ξ)

1. Q is initialized to U ;
2. If there exists a user i in Q with vi < ξ(Q, i) then drop i from Q. Keep

repeating this step, in arbitrary order, until for every user i in Q, vi ≥ ξ(Q, i);
3. Set P i(b) := ξ(Q, i), for all i ∈ U .

A sharing method ξ(·) is cross-monotonic if, for every two sets Q and Q′,
with Q′ ⊂ Q ⊆ U , it holds that ξ(Q, i) ≤ ξ(Q′, i), for every i ∈ Q′.

The fundamental result by Moulin and Shenker reduces the problem of de-
signing a mechanism to the problem of finding a cross-monotonic sharing method
ξ(·) for a cost function CA(·). The resulting mechanism MA(ξ) uses the scheme
M(ξ) to compute the set Q = Q(b) and the payments P i(b) = ξ(Q(b), i), and
then simply builds a feasible solution TQ(b) = A(Q(b)). Then the following holds:

Theorem 1. [8, 7] 3 For any optimal (respectively, α-approximation) algorithm
A and any cross-monotonic cost-sharing method ξ(·) for CA(·), the mechanism
MA(ξ) is group strategyproof, BB (respectively, α-approximate BB), 0-surplus
and satisfies NPT, VP and CS.

3.1 Extending Moulin and Shenker pproach

We will show that the cross-monotonicity property can be relaxed so to hold
only for certain sets that mechanism M(ξ) can actually output.

Definition 1. Given any function ξ : 2U × U → R+ ∪ {0}, we define Qξ
0 := U ,

and Qξ
j := {Q \ {i}| Q ∈ Qξ

j−1 ∧ ξ(Q, i) > 0}. Moreover, Qξ := ∪j≥0Qξ
j .

A key point is that mechanisms MA(ξ) can generate only those subsets of
receivers in Qξ:

Lemma 1. At each round of M(ξ), the set Q considered in Step 2 satisfies
Q ∈ Qξ.

Definition 2. A function ξ : 2U ×U → R+ ∪{0} is self cross-monotonic if, for
every Q, Q′ ∈ Qξ with Q′ ⊂ Q, it holds that ξ(Q′, i) ≥ ξ(Q, i), for every i ∈ Q′.

We next prove the main result of this section. Its proof is similar to the one
given in [3].

3 The result presented here is sightly more general then the one in [8, 7]; indeed, as
first observed in [3], their result can also deal with α-approximate BB mechanism.

A
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Theorem 2. For any optimal (respectively, α-approximation) algorithm A and
any self cross-monotonic β-cost-sharing method ξ(·) for CA(·), the mechanism
MA(ξ) is group strategyproof, β-approximate BB (respectively, αβ-approximate
BB), (β − 1)-surplus and satisfies NPT, VP and CS. Moreover, MA(ξ) runs in
polynomial time if A and ξ(·) are polynomial time.

Proof. Condition CS follows from the fact that a user i is dropped in Step 2 only
if bi < ξ(Q, i). The NPT and VP conditions thus follow from the properties of
ξ(·).

We next prove the group strategyproofness. Consider a coalition C ⊆ U such
that

j �∈ C ⇒ bj = vj , (4)
i ∈ C, bi �= vi ⇒ vi · σi(Qfalse)− P i(bC , v−C) ≥

vi · σi(Qtrue)− P i(vC , v−C), (5)

where Qfalse and Qtrue denote the sets of receivers returned by MA(ξ) on input
(bC , v−C) and (vC , v−C), respectively. We have to show that the above inequality
cannot hold with ‘>’. Observe that, if i /∈ Qfalse, then the NPT and the CS
conditions imply that Eq. 5 holds with ‘=’. We thus assume i ∈ Qfalse and we
consider the following two cases:

Qfalse ⊆ Qtrue. From Lemma 1, Qfalse ∈ Qξ and Qtrue ∈ Qξ. Since i ∈ C, by
self cross-monotonicity and by the definition of P i(·) in M(ξ),

P i(bC , v−C) = ξ(Qfalse, i) ≥ ξ(Qtrue, i) = P i(vC , v−C). (6)

Since Qfalse ⊆ Qtrue, σi(Qfalse) ≤ σi(Qtrue). By contradiction, if Eq. 5
holds with ‘>’, then we would obtain

vi · σi(Qtrue)− P i(bC , v−C) > vi · σi(Qtrue)− P i(vC , v−C),

which contradicts Eq. 6.
Qfalse �⊆ Qtrue. We will show that this case cannot arise. Let s1, . . . , sk be the

sequence of users that MA(ξ) drops on input (vC , v−C), i.e., Qtrue = U \
{s1, . . . , sk}. Let sj be the first user in s1, . . . , sk such that sj ∈ Qfalse.
Therefore bsj

≥ ξ(Qfalse, sj). By definition of s1, . . . , sj−1, Qfalse ⊆ Qj−1 :=
U \{s1, . . . , sj−1}. By Lemma 1 and by the self cross-monotonicity of ξ(·), we
have ξ(Qfalse, sj) ≥ ξ(Qj−1, sj). Since sj is dropped in Qtrue, the definition
of MA(ξ) implies that ξ(Qj−1, sj) > vsj

. Putting things together we obtain

bsj ≥ ξ(Qfalse, sj) ≥ ξ(Qj−1, sj) > vsj . (7)

If sj /∈ C, bsj = vsj , thus contradicting the above inequalities. Otherwise,
when sj ∈ C, Eq. 5 yields vsj

− P sj (bC , v−C) ≥ 0, thus implying vsj
≥

ξ(Qfalse, sj), which contradicts Eq. 7.

Finally, since, for every Q ⊆ U , CA(Q) ≤ ∑i∈Q ξ(Q, i) ≤ βCA(Q) ≤ αβ ·
Copt(Q), where α is the approximation ratio of A, MA(ξ) is αβ-approximate and
(β − 1)-surplus.
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3.2 Reasonable Algorithms Is All We Need

In the remaining of this work, given an instance G and a feasible solution TQ for
it, the corresponding set of users that are serviced is denoted to as Serv(TQ, G).

Definition 3. An algorithm A is reasonable if, for every instance G, there exists
a sequence i1, i2, . . . , in of users such that, denoted by Qj := U \ {i1, i2, . . . , ij},
for 1 ≤ j ≤ n, it holds that Serv(A(Qj), G) = Qj, i.e., algorithm A is able to
compute a solution which serves all and only the users in Qj, for 0 ≤ j ≤ n.
(We let Q0 := U .)

Theorem 3. If A is reasonable then there exists a self cross-monotonic cost-
sharing method ξ(·) for CA(·).
Proof. Let Qj be the set defined as in Def. 3. To ensure self cross-monotonicity,
we define

ξ(Qj , i) =
{

CA(Qj) if i = j + 1,
0 otherwise. (8)

We first show that Qξ
j = Qj . Indeed, at round j of MA(ξ), the only user which

can be dropped is j + 1, for 0 ≤ j ≤ n. Consider Q, Q′ ∈ Qξ with Q ⊂ Q′.
Then it must be the case Q = Qa and Q′ = Qb, for some a > b. Let i ∈ Q,
with ξ(Q, i) > 0 (otherwise the theorem holds). Then i = ia, thus implying
ξ(Qb, i) = 0 = ξ(Q′, i) < ξ(Q, i). Finally, ξ(·) can be easily extended outside Qξ

so to enforce Eq.s 2-3 for every Q ⊆ U .

3.3 Steiner Tree Game

Consider a graph G = (U∪{s}, E, c) where the set of terminals coincides with the
set of users U . Consider the execution of Prim’s algorithm on graph G, starting
from node a0 := s. Let aj be the j-th node added it the j-th iteration: aj is the
closest, among all nodes in U \{a1, . . . , aj−1}, to the connected component built
so far, i.e., Sj−1 := {s}∪{a1, . . . , aj−1}. Let Tj be the tree containing Sj . Then,
for every j ≥ 0, COST(Tj) = COST(MST(Sj)).

We next strengthen this result and prove that COST(Tj) is also the optimal
cost for the Steiner tree of Sj :

Theorem 4. For every j ≥ 0, let ST ∗(Sj) be an optimal Steiner tree in G with
terminal set Sj and possibly using Steiner points in U \ Sj. Then, it holds that
COST(ST ∗(Sj)) = COST(Tj).

Proof. The proof is by induction on r := n− j, i.e., Sj = Sn−r and 0 ≤ r ≤ n.

Base step (r = 0). For Sn = U there are no Steiner points, thus implying that
ST ∗(Sn) must be a MST of G.

Inductive step (from r = n− j − 1 to r + 1 = n− j). Let j +1 = n− r and
let (ak, aj+1) be the edge added at step j +1 to connect aj+1 to Sj . By con-
tradiction, assume COST(Tj) �= COST(ST ∗(Sj)). Since ST ∗(Sj) is optimal
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for Sj , it must hold that COST(Tj) > COST(ST ∗(Sj)). If aj+1 is not a node
of ST ∗(Sj), then we let T ′(Sj+1) := ST ∗(Sj) ∪ (ak, aj+1); otherwise, we let
T ′(Sj+1) := ST ∗(Sj). Since ak ∈ Sj , then T ′(Sj+1) is a tree spanning Sj+1.
By definition, Tj+1 = Tj ∪ (ak, aj+1), thus implying

COST(T ′(Sj+1)) ≤ COST(ST ∗(Sj)) + c(ak,aj+1)

< COST(Tj) + c(ak,aj+1) = COST(Tj+1).

By the inductive hypothesis COST(ST ∗(Sj+1)) = COST(Tj+1), and the
above inequality contradicts the optimality of ST ∗(Sj+1).

This completes the proof.

Theorem 4 implies that MST is reasonable and optimal for all sets Qj :=
Sn−j , 0 ≤ j ≤ n. Theorems 2 and 3 thus yield the following:

Corollary 1. The Steiner tree game admits a mechanism MMST(ξ) running in
polynomial time which is group strategyproof, budget balance and satisfies NPT,
VP and CS.

4 Wireless Multicast and Limits of Cross-Monotonic
Methods

Wireless multicast game. In wireless multicast routing, a feasible solution is
a directed tree T containing a path from s to all of its nodes (i.e., T must
be rooted at s and directed downwards). The cost of T is the total energy
consumption required to implement all of its edges, which is equal to COST(T ) :=∑

i∈U max(i,j)∈T c(i,j). In the d-dimensional Euclidean version, c(i,j) = d(i, j)γ ,
for some γ > 1 and d(i, j) being the Euclidean distance between i and j, and
the instance G is a complete graph with nodes U . We assume γ ≥ d as in [1].
Fig. 1 shows a 2-dimensional Euclidean instance G:4 the cost of the tree T =
{(s, x1), (s, x2), (x1, q1), (x2, q2)} is equal to ε + 2. Interestingly, T = MST(G),
which is not the optimal one:5 the tree T ∗ connecting s directly to every other
node has cost (1 + ε)γ , which is better for sufficiently small ε. Observe that,
COST(T ) = CMST(U) <

∑
(i,j)∈T c(i,j).

(1 + ε)α(1 + ε)α

sq1 x1 q2x2

1 1ε ε

Fig. 1. The “bad” graph B2

4 For the sake of readability we do not draw all edges of the complete weighted graph G.
5 For this problem, algorithm MST builds a MST of G and then orients it downwards s.
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Theorem 5. There exists a polynomial-time mechanism for the wireless multi-
cast game which, for d-dimensional Euclidean networks, is group strategyproof,
(3d − 1)-approximate BB, 0-surplus and meets NPT, VP and CS.

We next argue that graph B2 in Fig. 1 constitutes an example of a “bad”
graph for the MST algorithm in that, under certain hypothesis, it forces certain
mechanisms MMST(ξ) (the one by Biló et al [1] being one of them) to generate
some surplus.

The two main ideas can be summarized as follows: (i) the two users {q1, q2}
must always pay at least the marginal cost CMST(U) − CMST(U \ {q1, q2}) =
(ε + 2)− ε = 2; (ii) the MST algorithm, on input U \ {x1, x2} = {q1, q2} yields a
solution of cost (1+ε)γ which is less than the above mentioned payment provided
by {q1, q2}. Hence, some surplus is created if Q(b) = {q1, q2}.

Instead of proving the result for the graph B2, we first generalized the above
example to a wide class of graphs for which it is possible to prove that certain
algorithms must create some surplus. Towards this end we first introduce some
notation.

Notation. For any tree T , let c(i, T ) := max(i,j)∈T c(i,j). Also let pay(T, i) be true
if and only if i = arg max{l| (j, l) ∈ T ∧ c(j,l) = c(j, T )}. Given an algorithm A,
we let A(Q) denote the tree returned by A on input the set of receivers Q.6 For
every Q ⊆ U , we define the following two quantities:

CA(Q, i) :=
{

c(j,i) if (j, i) ∈ A(Q) ∧ pay(A(Q), i),
0 otherwise. (9)

∀X ⊆ U, CA(Q, X) :=
∑
i∈X

CA(Q, i). (10)

In particular, CA(Q) = CA(Q, Q).
For every i ∈ Q, let QA

i be the subset of nodes that are reachable through
i in A(Q) (i.e., those nodes that have i as an ancestor in A(Q)). Let Ai(Q) be
set of edges connecting i to QA

i in A(Q) (i.e., the edges in the subtree of A(Q)
rooted at i). Notice that Ai(Q) does not contain i.

Definition 4. A communication graph G = (U ∪ {s}, E, w) is A-bad if there
exist Q ⊆ U , X ⊂ Q and Y ⊂ Q such that the following hold:

A(Q \QX) = A(Q) \
⋃
i∈X

Ai(Q) (11)

CA(Q \ Y ) < CA(Q, QX) (12)

with Y ∩QX = ∅.

6 We assume the algorithm A to return a tree connecting the source s to all and only
the nodes in Q.
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Theorem 6. If G is A-bad, then there is no cross-monotonic cost-sharing method
ξ(·) for CA(·).

The mechanism by Biló et al [1] employs the cross-monotonic methods ξF (·)
for the MST game by Jain and Vazirani [3]: given a family F = {f1, . . . , fn} of
functions fi : R+ → R+, the function ξF (·) is a β-cost-sharing method for the
wireless multicast cost function yielded by algorithm MST.

In the sequel, we will show that this kind of approach must always create
some surplus. Intuitively, their mechanism MMST(ξF ) can potentially output
every subset Q ⊆ U , which requires the method ξF (·) to be cross-monotonic.
Theorem 6 thus implies that β > 1.

Definition 5. A function ξ : 2U ×U → R+ ∪{0} is Y -critical if, for all j ∈ Y ,
ξ(U, j) > 0, where Y ⊆ U .

Theorem 7. Let G = (U ∪ {s}, E, c) be a A-bad graph. If ξ(·) is a cross-
monotonic β-cost-sharing method for CA(·) which is Y -critical, where Y is the
set in Def. 4, then the mechanism MA(ξ) is not 0-surplus (on the instance G).

The above result can be applied to a family of graphs Bk generalizing graph
B2 in Fig. 1:

Definition 6. For every integer k ≥ 2, the graph Bk = (Uk ∪ s, Ek, c) is defined
as follows: Uk := {ql}1≤l≤k ∪ {xl}1≤l≤k, Ek := {(s, i)|i ∈ Uk} ∪ {(ql, xl)}1≤l≤k.
Moreover, c(s,xl) = ε, c(xl,ql) = 1 and c(s,ql) = (1 + ε)γ .

For Bk graphs, we can strengthen Theorem 7 and provide a lower bound
on the surplus that all mechanisms using a U -critical function ξ(·) must gener-
ate. It is easy to verify that, for every F , ξF (·) is U -critical for every weighted
graph G with non-zero edge weights. We thus obtain the following result on the
mechanism MMST(ξF ) proposed by Biló et al [1]:

Corollary 2. Let ξ(·) be cross-monotonic and U -critical. Then, for every graph
Bk, mechanism MMST(ξ) cannot be β-surplus, for any β < k − 1. Moreover,
for d-dimensional Euclidean instances, MMST(ξF ) cannot be less than (τd − 1)-
surplus, with τ1 = 2, τ2 = 6, and τd increasing exponentially in d. These results
apply to MMST(ξF ), for every F .

The next result states that no A-bad graph exists if A is an optimal algorithm.

Theorem 8. If G = (U ∪ {s}, E, c) is A-bad, then A is not optimal.

Proof. Let Q ⊆ U and X, Y ⊆ Q be the sets as in Def. 4. Then Eq.s 11-12 imply
respectively

CA(Q) = CA(Q \QX) + CA(Q, QX) > CA(Q \QX) + CA(Q \ Y ). (13)

Since Y ∩QX = ∅, {Q \QX} ∪ {Q \ Y } = Q. Hence, the tree T := A(Q \QX)∪
A(Q \ Y ) reaches all nodes in Q and its cost satisfies

COST(T ) ≤ CA(Q \QX) + CA(Q \ Y ) < CA(Q),

thus implying that A was not optimal on input Q.
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One could try to prove that no BB mechanism employing algorithm A exists
by showing that (i) there exists an A-bad instance and (ii) the function CA(·) is
submodular. Unfortunately, this never happens:

Theorem 9. If G = (U ∪ {s}, E, c) is A-bad, then CA is not submodular.

Notice that, the above theorem also implies that, if A-bad instances exist, it
is still possible to have BB mechanisms which are not based on cross-monotonic
cost-sharing functions for CA(·). In order to prove Theorem 9, we first need the
following two intermediate results.

Lemma 2. For every A-bad graph it holds that

CA(Q \QX) = CA(Q)− CA(Q, QX),

where X is the same as in Def. 4.

Proof. Eq. 11 implies that A(Q \QX) = A(Q) \ {(i, j)| (i, j) ∈ A(Q) ∧ j ∈ QX}.
Hence, since A(Q) is a tree, we have

CA(Q \QX) =
∑
i∈Q

CA(Q, i)−
∑

i∈QX

CA(Q, i) = CA(Q)− CA(Q, QX).

Lemma 3. If CA(·) is submodular, then for any Q′, Q, A ⊆ U , with Q′ ⊂ Q and
A ∩Q′ = ∅, it holds that

CA(Q′ ∪A)− CA(Q′) ≥ CA(Q ∪A)− CA(Q). (14)

Proof. Since CA(·) is submodular, then for any Q′, Q, A ⊆ U , with Q′ ⊂ Q, and
any a /∈ Q′, it holds that

CA(Q)− CA(Q′) ≥ CA(Q ∪ {a})− CA(Q′ ∪ {a}). (15)

By contradiction, assume that there exists A = {a1, . . . .ak}, with A ∩ Q′ = ∅
such that CA(Q)− CA(Q′) < CA(Q ∪ A)− CA(Q′ ∪ A). By repeatedly applying
Eq. 15, with a = a1, a = a2, . . . , a = ak, we obtain

CA(Q ∪A)− CA(Q′ ∪A) > CA(Q)− CA(Q′)
≥ CA(Q ∪ {a1})− CA(Q′ ∪ {a1})
≥ CA(Q ∪ {a1, a2})− CA(Q′ ∪ {a1, a2})
...
≥ CA(Q ∪A)− CA(Q′ ∪A),

thus a contradiction.
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We are now in a position to prove Theorem 9.

Proof of Theorem 9. From Def. 4 and Lemma 2 there exist Q ⊆ U and X, Y ⊆ Q
such that

CA(Q, QX) = CA(Q)− CA(Q \QX) > CA(Q \ Y ). (16)

By contradiction, assume that CA(·) is submodular. The fact that CA(·) ≥ 0,
Lemma 3 (with A = QX) and Eq. 16 imply the following inequalities, respec-
tively:

CA(Q\Y ) ≥ CA(Q\Y )−CA(Q\{Y ∪QX} ≥ CA(Q)−CA(Q\QX) > CA(Q\Y ).

The above contradiction implies that CA(·) is not submodular.

The following result states that the converse of the above theorem does not
hold. Hence, there is no equivalence between “non submodularity” and “badness”
of cost functions.

Theorem 10. There exists a two-dimensional Euclidean instance G = (U ∪
{s}, E, c) for which G is not MST-bad and CMST(·), restricted to G, is not sub-
modular.

Acknowledgements. We wish to thank the authors of [1] for providing us with a
copy of their work.
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Abstract. We consider the problem of splitting an order for R goods,
R ≥ 1, among a set of sellers, each having bounded amounts of the goods,
so as to minimize the total cost of the deal. In deal splitting with packages
(DSP), the sellers offer packages containing combinations of the goods; in
deal splitting with price tables (DST), the buyer can generate such com-
binations using price tables. Our problems, which often occur in online
reverse auctions, generalize covering integer programs with multiplicity
constraints (CIP), where we must fill up an R-dimensional bin by select-
ing (with bounded number of repetitions) from a set of R-dimensional
items, such that the overall cost is minimized. Thus, both DSP and DST
are NP-hard, already for a single good, and hard to approximate for
arbitrary number of goods.

In this paper we focus on finding efficient approximations, and ex-
act solutions, for DSP and DST instances where the number of goods is
some fixed constant. In particular, we show that when R is fixed both
DSP and DST can be optimally solved in pseudo-polynomial time, and
develop polynomial time approximation schemes (PTAS) for several sub-
classes of instances of practical interest. Our results include a PTAS for
CIP in fixed dimension, and a more efficient (combinatorial) scheme for
CIP∞, where the multiplicity constraints are omitted. Our approxima-
tion scheme for CIP∞ is based on a non-trivial application of the fast
scheme for the fractional covering problem, proposed recently by Fleis-
cher [Fl-04].

1 Introduction
An increasing number of companies are using online reverse auctions for their
sourcing activities. In reverse auctions, multiple sellers bid for a contract from a
buyer for selling goods and/or services. We consider the deal splitting problems
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arising in these reverse auctions. Suppose that a buyer needs to order multiple
units from a set of R goods. The number of units required from the j-th good,
1 ≤ j ≤ R, is nj ≥ 1. The goods can be obtained from m sellers, S1, . . . , Sm.
Each seller offers certain amount from each good (or some combination of the
goods); the maximum number of units of the j-th good available from Si is Tij ,
1 ≤ j ≤ R, 1 ≤ i ≤ m. In any deal, we may split the order for the goods among
a subset of the sellers. We say that a deal is feasible if (i) the number of units
obtained from the j-th good is at least nj , 1 ≤ j ≤ R, and (ii) the amount of
the j-th good obtained from Si does not exceed Tij , its supply from that good,
1 ≤ i ≤ m, 1 ≤ j ≤ R. The goal is to find a feasible deal of minimum total cost.
Deal splitting naturally models a procurement auction to obtain raw materials
with flexible sized lots and many other services. We consider two variants of the
problem.

In deal splitting with packages (DSP), each of the sellers, Si, offers a set of
Ni packages. The �-th package, pi

�, 1 ≤ � ≤ Ni, has a non-negative cost c(pi
�)

and is given by the R-tuple (ni
�1, . . . , n

i
�R); that is, Si offers in this package

0 ≤ ni
�j ≤ nj units from the j-th good, 1 ≤ j ≤ R. We need to find a feasible

deal that minimizes the total cost.
In deal splitting with price tables (DST), each seller Si, has mi price ranges.

The minimal and maximal numbers of units of the j-th good available from Si

in the �-th price range are r�j and u�j , respectively. The unit cost for the j-th
good in the �-th range is c�j , 1 ≤ � ≤ mi, 1 ≤ j ≤ R.1 Thus, the �-th entry in
the price table of Si is given by the vector {(r�1, u�1, c�1), . . . , (r�R, u�R, c�R)}.
We need to find a feasible deal in which the sale of Si, 1 ≤ i ≤ m, corresponds
to a valid entry in its price table, and the total cost is minimized.

We note that DSP is NP-hard already for R = 1, by reduction from Partition,
and hard to approximate within factor lnR for arbitrary R > 1, as it includes
as a special case the multi-set multi-cover problem.2 For DST, we note that
each price range of a seller “encodes” a possibly large number of packages (each
formed by choosing the number of units from each good), as well as a simple rule
for computing the price of a particular package (via the unit costs). Thus, in the
special case where each price table consists of a single price range, which allows
to form a single combination of the goods, we get an instance of the constrained
multi-set multi-cover. It follows that DST is also hard to approximate within
factor lnR.

Note that DSP generalizes also covering integer program with multiplicity
constraints (CIP). In this core problem, we must fill up an R-dimensional bin
by selecting (with bounded number of repetitions) from a set of R-dimensional
items, such that the overall cost is minimized. Formally, let A = {aji} denote
the sizes of the items in the R dimensions, 1 ≤ j ≤ R, 1 ≤ i ≤ n; the cost of item
i is ci ≥ 0. Let xi denote the number of copies selected from item i, 1 ≤ i ≤ n.

1 See an example in the Appendix.
2 We elaborate in [S+04] on the relation of our problems to set cover and its general-

izations.
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We seek an n-vector x of non-negative integers, which minimizes cT x, subject
to the R constraints given by Ax ≥ b, where bj ≥ 0 is the size of the bin in
dimension j. In addition, we have multiplicity constraints for the vector x, given
by x ≤ d, where d ∈ {1, 2, . . .}n. Recall that, in DSP, each seller Si has Tij units
from the j-th good. Consider, for example, the case where R = 2, and suppose
that Si has Ti1 = 10 units from the first good and Ti2 = 20 units from the
second good. Si offers two possible packages: pi

1 = (5, 7) and pi
2 = (6, 2); then

if we obtain two copies of pi
1, no copies of pi

2 are available. This dependence
among the packages makes DSP a generalization of CIP.3 Indeed, an instance of
CIP can be formulated as a special case of DSP, where each seller offers a single
package, whose “multiplicity” reflects the precise amount that is available from
each of the goods.

1.1 Our Results

Since our deal splitting problems are harder than set cover, the best approxima-
tion ratio that we can expect for arbitrary R is O(log R) (see, e.g., in [Va-01]);
thus, we focus on finding efficient approximations, and exact solutions, for sub-
classes of instances in which R is a fixed constant. We summarize below our
main results.

Deal Splitting with Packages: We show (in Section 2.1) that when R is fixed
DSP can be solved in pseudo-polynomial time. In Section 2.2 we develop a PTAS
for instances where the i-th seller offers a set of Ni ≥ 1 packages, pi

1, . . . , p
i
Ni

,
and the buyer can obtain at most ri

� copies from pi
�, for some ri

� ≥ 1; the total
amount of the j-th good available from Si is Tij =

∑Ni

�=1 ni
�jr

i
�, 1 ≤ j ≤ R,

1 ≤ i ≤ m. Indeed, such instances can be formulated as CIP with
∑m

i=1 Ni

variables. Thus, we get a PTAS for CIP in fixed dimension. In Section 2.3 we
consider DSP instances with unbounded supply. Such instances model deals in
which the buyer’s need is much smaller than the supply from each of the goods.
For these instances we develop a faster (combinatorial) scheme. This gives a
combinatorial approximation scheme for CIP∞.

Deal Splitting with Price Tables: We show (in Section 3) that when R is
fixed DST is solvable in pseudo-polynomial time. We then develop a PTAS for
DST instances in which the price tables satisfy some natural properties such as
volume discount, that is widely used in reverse auctions (see, e.g., in [KPS-03],
[BK+02]).4

Techniques: Our PTAS for unbounded DSP (in Section 2.3) is based on a non-
trivial application of a fully polynomial time approximation scheme (FPTAS) for
the fractional covering problem, proposed recently by Fleischer [Fl-04]. We use
this combinatorial scheme to obtain an approximate fractional solution for a lin-

3 In the corresponding integer program, we get dependencies among the variables that
give the number of copies obtained from each package.

4 We elaborate on these properties in Section 3.
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ear programming formulation of our problem, building on a technique of Chandra
et al. [CHW-76]. We show that by rounding an approximate solution for the LP
we increase the cost of the optimal (integral) solution for the DSP instance only
by factor of ε. Thus, we get a fast combinatorial implementation for our LP-
based scheme. The overall running time of the scheme is O(N�R/ε� · 1

ε2 log C),
where N =

∑m
i=1 Ni is the total number of distinct packages offered by the

sellers, and C = max1≤i≤N ci is the maximal cost of any package. Since un-
bounded DSP is equivalent to CIP∞, this yields a combinatorial approximation
scheme for CIP∞ in fixed dimension. With slight modification, we get the first
combinatorial scheme for multi-dimensional multiple choice knapsack.

In our PTAS for DST (in Section 3), we combine the guessing technique of
Chekuri and Khanna [CK-00] with a novel application of the technique of Frieze
and Clarke [FC-84], to the minimum binary multiple choice knapsack problem
in fixed dimension. Indeed, due to the constraints imposed on the solution for
DST — the amounts chosen from the goods for each seller must correspond to
a valid entry in its price table — we cannot apply the rounding technique of
[FC-84] to the fractional solution obtained by our scheme; instead, we apply
non-standard rounding, which relies heavily on the mathematical properties of
the price tables.

1.2 Related Work

Procurement Auctions.: Our deal splitting problems belong to the class of
winner determination problems in reverse auctions. Generally, in reverse auction
we have a single buyer that needs to obtain multiple goods, and a set of sellers
offers bids for selling the goods. Bidding may follow various mechanisms (a survey
of common mechanisms is given in [W-96]). The DST problem with single good
(i.e., R = 1) and price tables that satisfy the volume discount property5 was
studied in [KPS-03]. The paper shows that DST is NP-hard already in this
case and presents an FPTAS for the problem. There has been some previous
work on deal splitting with multiple goods, however, these papers present either
experimental studies or software that implements a given mechanism (see, e.g.,
[BK+02]). Heuristic methods and preliminary analytic results related to deal
splitting are given in [SG+02].

Multiple Choice Knapsack (MCK).: As shown in Section 2.2, DSP can
be reduced to the minimum R-dimensional binary MCK (R-MMCK) problem.
The maximum variant of this problem was studied since the mid-1970’s (see,
e.g., [Lu-75], [IH+78], [I-80]). For a single dimension, the best known result is a
PTAS by Chandra et al. [CHW-76]. Most of the published work on the maximum
multi-dimensional binary MCK presented heuristic solutions (see a survey in
[AM+97]). Recently, Shachnai and Tamir developed in [ST-03] a PTAS for the
problem in fixed dimension. Our scheme in Section 2.2 includes a PTAS for the
minimum R-dimensional binary MCK in fixed dimension.

5 See in Section 3.
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In Section 2.3, we reduce unbounded DSP to the minimum (non-binary) R-
dimensionalMCK. Chandra et al. [CHW-76] gave aPTAS for themaximumversion
of this problem in fixed dimension; their scheme solves as a procedure a linear
program. Our scheme yields the first combinatorial scheme for this problem.

Set Cover/Covering Integer Programs.: As mentioned above, our prob-
lems include as a special case the multi-set multi-cover problem. Set cover and
its generalizations have been extensively studied. (A comprehensive survey is
given in [Va-01].) Feige showed that in general set cover is hard to approximate
within factor ln |E|, where E is the set of elements to be covered. This hard-
ness result carries over to multi-set multi-cover. The best approximation ratio
for set cover is (1 + ln |E|) [C-79]. For multi-set multi-cover, the best ratio is
O(log maxS |S|), where |S| is the size of the multi-set S when counting elements
with multiplicity [RV-98]. This yields an O(log n)-approximation algorithm for
general instances of DSP with unbounded supply, where n =

∑R
j=1 nj .

Covering integer programs form a large subclass of integer programs en-
compassing such NP-hard problems as minimum knapsack and set cover. This
implies the hardness of CIP in fixed dimension (i.e., where R is a fixed con-
stant). For general instances, the hardness of approximation results for set cover
carry over to CIP. Dobson [D-82] gave an algorithm that outputs a solution
of cost O(max1≤i≤n{log(

∑m
j=1 Aij)}) times the integral optimum. It was un-

known until recently whether an O(log R)-approximation existed. Kolliopoulos
and Young [KY-01] settled this question. Their O(log R)-approximation yields
the first constant approximation for CIP in fixed dimension. A comprehensive
survey of other results is given in [K-03] (see also in [KY-01]). The best known
bounds for the CIP∞ problem (that include existential improvements on the
O(log R) factor) are due to Srinivasan ([S-99] and [S-96]). In this paper, we give
the first pseudo-polynomial time algorithms and approximation schemes for CIP
and CIP∞ in fixed dimension.

Due to space limitations, we omit some of the proofs. Detailed proofs can be
found in [S+04].

2 Deal Splitting with Packages

2.1 Exact Algorithms

When R is fixed DSP is solvable in pseudo-polynomial time. In particular,

Theorem 1. DSP can be solved optimally in O(m · max1≤i≤m Ni ·
∏R

j=1 n3
j )

steps, where nj is the number of units required from the j-th good.

This yields a pseudo-polynomial time algorithm for CIP in fixed dimension.

Corollary 1. CIP in fixed dimension, R, and n variables can be solved optimally
in O(n ·maxi,j(aijdi)2R).

Consider a restricted version of DSP, in which we require that the total
number of packages used in the deal is bounded by some fixed constant, k ≥ 1.
It can be shown that the problem then becomes easy to solve.
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Theorem 2. Restricted DSP is solvable in polynomial time.

2.2 DSP with Bounded Multiplicity

Approximation Scheme: Suppose that the packages offered by each of the
sellers have bounded multiplicity. Specifically, there are ri

� copies available from
pi

�, 1 ≤ � ≤ Ni. In this case, if pi
� = (ni

�1, . . . , n
i
�R), 1 ≤ � ≤ Ni, then the number

of units of the j-th good available from Si is Tij =
∑Ni

�=1 ni
�jr

i
�, for 1 ≤ j ≤ R,

1 ≤ i ≤ m. We now develop a PTAS for these instances, assuming that R is
fixed.

Reduction to the R-MMCK Problem: Assume that we know the opti-
mal cost, C, for our instance, then we reduce our problem to the minimum
R-dimensional binary multiple choice knapsack problem. Recall that for some
R ≥ 1, an instance of binary R-MMCK consists of a single R-dimensional knap-
sack, of size bj in the j-th dimension, and m sets of items. Each item has an
R-dimensional size and is associated with a cost. The goal is to pack a subset
of items, by selecting at most one item from each set, such that the total size of
the packed items in dimension j is at least bj , 1 ≤ j ≤ R, and the overall cost is
minimized.

For given values of C and ε, we define an instance for R-MMCK, such that
if there is an optimal solution for DSP with cost C, we can find a solution for
the DSP instance, whose cost is at most C(1 + ε). Note that C can be ‘guessed’
in polynomial time within factor (1 + ε), using binary search over the range
(0,
∑m

i=1
∑Ni

�=1 ri
�c(p

i
�)).

Formally, given the value of C, the parameter ε and a DSP instance with
bounded multiplicity, we construct an R-MMCK instance in which the knapsack
capacities in the R dimensions are bj = nj , 1 ≤ j ≤ R. Also, we have N =∑m

i=1 Ni sets of items, denoted by Ai
�, 1 ≤ i ≤ m, 1 ≤ � ≤ Ni. Let K̂i

� be the
value satisfying ri

�c(p
i
�) ∈ [K̂i

�εC/N, (K̂i
� +1)εC/N), then the number of items in

Ai
� is Ki

� = min(K̂i
�, 	N/ε
). The set Ai

� represents a sale of the package pi
� which

partially fulfills the order. In particular, the k-th item in Ai
�, denoted (i, �, k),

represents a sale of at most ri
� copies of pi

� such that c(i, �, k), the total cost
incurred by these copies, is in [kεC/N, (k + 1)εC/N). This total cost is rounded
down to the nearest integral multiple of εC/N ; thus, c(i, �, k) = kεC/N . The
size of the item (i, �, k) in dimension j, 1 ≤ j ≤ R, denoted by sj(i, �, k), is the
total number of units of the j-th good that we can obtain, such that the total
(rounded down) cost is c(i, �, k).

Approximating the Optimal Solution for R-MMCK: Given an instance
of R-MMCK, we ‘guess’ the set S of items of maximal costs in the optimal
solution, where |S| = h = min(m, 	 2R(1−ε)

ε 
). We choose the value of h such
that the resulting solution is guaranteed to be within 1 + ε from the optimal, as
computed below. Let E(S) be the subset of items with costs that are larger than
the minimal cost of any item in S, that is, E(S) = {(i, �, k) /∈ S | c(i, �, k) >
cmin(S)}, where cmin(S) = min(i,�,k)∈S c(i, �, k). We select all the items (i, �, k) ∈
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S, and eliminate from the instance all the items (i, �, k) ∈ E(S) and the sets Ai
�

from which an item has been selected. In the next step we find an optimal basic
solution for the following linear program, in which xi,�,k is an indicator variable
for the selection of the item (i, �, k) /∈ S ∪ E(S).

(LP (S)) minimize
m∑

i=1

Ni∑
�=1

Ki
�∑

k=1

xi,�,k · c(i, �, k)

subject to :
Ki

�∑
k=1

xi,�,k ≤ 1 for i = 1, . . . , m, � = 1, . . . , Ni

m∑
i=1

Ni∑
�=1

Ki
�∑

k=1

sj(i, �, k)xi,�,k ≥ nj for j = 1, . . . , R

0 ≤ xi,�,k ≤ 1 for (i, �, k) /∈ S ∪ E(S)

Rounding the Fractional Solution: Given an optimal fractional solution for
R-MMCK, we get an integral solution as follows. For any i, 1 ≤ i ≤ m and �,
1 ≤ � ≤ Ni let kmax = kmax(�, i) be the maximal value of 1 ≤ k ≤ Ki

� such that
xi,�,k > 0; then we set xi,�,kmax

= 1 and, for any other item in Ai
�, xi,�,k = 0.

Finally, we return to the DSP instance and take the maximum number of copies
of the package pi

� whose total (rounded down) cost is c(i, �, kmax).

Analysis of the Scheme: We use the next three lemmas to show that the
scheme yields a (1+ε)-approximation to the optimum cost, and that the resulting
integral solution is feasible.

Lemma 1. If there exists an optimal (integral) solution for DSP with cost C,
then the integral solution obtained from the rounding for R-MMCK has the cost
ẑ ≤ (1 + ε)C.

Lemma 2. The scheme yields a feasible solution for the DSP instance.

Lemma 3. The cost of the integral solution for the DSP instance is at most
ẑ + εC.

Combining the above lemmas we get:

Theorem 3. There is a polynomial time approximation scheme for DSP in-
stances with fixed number of goods and bounded multiplicity.

Consider an instance of CIP in fixed dimension, R. We want to minimize∑n
i=1 cixi subject to the constraints

∑n
i=1 aijxi ≥ bj for j = 1, . . . , R, and

xi ∈ {0, 1, . . . di} for i = 1 . . . , n. We can represent such a program as an instance
of DSP with m = n sellers, each offering a single package i of multiplicity di.
The number of units required from the j-th good is nj = bj .
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Corollary 2. The above is a PTAS for CIP in fixed dimension.

2.3 Unbounded DSP

Consider now the special case where the sellers have unbounded supply from
each of the goods. As before, we formulate our problem as a linear program,
however, instead of applying standard techniques to solve this program, we use
a fast combinatorial approximation scheme of [Fl-04] to get a fractional solution
that is within factor of (1 + ε) from the optimal; then, we round the solution to
obtain an integral solution that is close to the optimal.

Overview of the Scheme. Our scheme, called multi-dimensional cover with
parameter ε (MDCε), proceeds in the following steps.

(i) For a given ε ∈ (0, 1), let δ = �R · ((1/ε)− 1)
.
(ii) Let ci denote the cost of package i. Recall that N =

∑m
i=1 Ni is the total

number of packages. We number the packages by 1, . . . , N , such that c1 ≥
c2 ≥ · · · ≥ cN .

(iii) Denote by Ω the set of integer vectors x = (x1, . . . , xN ) satisfying xi ≥ 0
and
∑N

i=1 xi ≤ δ. For any vector x ∈ Ω:
– Let d ≥ 1 be the maximal integer i for which xi �= 0. Find a (1 + ε)-

approximation to the optimal (fractional) solution of the following linear
program.

(LP ′) minimize
N∑

i=d+1

cizi

subject to :
N∑

i=d+1

aijzi ≥ nj −
N∑

i=1

aijxi for j = 1, . . . , R (1)

zi ≥ 0, for i = d + 1, . . . , N

The constraints (1) reflect the fact that we need to obtain from each of the goods
at least nj −

∑N
i=1 aijxi, units, once we obtained the vector x.

(iv) Let ẑi, d + 1 ≤ i ≤ N be a (1 + ε) -approximate solution for LP ′. We take
�ẑi
 as the integral solution. Denote by CMDC(x) =

∑N
i=d+1 ci�ẑi
 the value

obtained from the rounded solution, and let c(x) =
∑N

i=1 cixi.
(v) Select the vector x for which CMDCε

(x) = minx(c(x) + CMDC(x)).

Analysis. We now show that MDCε is a PTAS for DSP with unbounded sup-
ply. Let Co be the optimal cost for DSP (in which we take an integral number
of units from each package).

Theorem 4. (i) If Co �= 0,∞ then CMDCε
/Co < 1+ε. (ii) The running time of

algorithm MDCε is O(N�R/ε� · 1
ε2 log C), where C = max1≤i≤N ci is the maximal

cost of any package, and its space complexity is O(N).
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We use in the proof the next lemma.

Lemma 4. For any ε > 0, a (1 + ε)-approximation to the optimal solution for
LP ′ can be found in O(1/ε2R log(C ·R)) steps.

Proof. For a system of inequalities as given in LP ′, there is a solution in which
at most R variables get non-zero values. This follows from the fact that the
number of non-trivial constraints is R. Hence, it suffices to solve LP ′ for the(
N−d

R

)
possible subsets of R variables, out of (zd+1, . . . , zN ). This can be done

in polynomial time since R is fixed. Now, for each subset of R variables we
have an instance of the fractional covering problem, for which we can find a
(1 + ε)-approximate solution using, e.g., the fast scheme of Fleischer [Fl-04].

Proof of Theorem 4: For showing (i), assume that the optimal (integral)
solution for the DSP instance is obtained by the vector y = (y1, . . . , yN ). If∑N

i=1 yi ≤ δ then CMDCε
= Co, since in this case y is a valid solution, and y ∈ Ω,

therefore, in some iteration MDCε will examine y. Suppose that
∑N

i=1 yi > δ,
then we define the vector x = (y1, . . . , yd−1, xd, 0, . . . , 0), such that y1 + · · · +
yd−1 +xd = δ. (Note that xd �= 0.) Let C̃o(x) =

∑N
i=d+1 ciẑi be the approximate

fractional solution for LP ′. We have that x ∈ Ω, therefore

CMDC(x)− C̃o(x) ≤ Rcd, (2)

Let Co(x) be the optimal fractional solution for LP ′ with the vector x. Note that
Co, the optimal (integral) solution for DSP, satisfies Co > c(x) + Co(x), since
Co(x) is a lower bound for the cost incurred by the integral values yd+1, . . . , yN .
In addition, c(x) + CMDC(x) ≥ CMDCε . Hence, we get that

Co

CMDCε

≥ c(x) + Co(x)
c(x) + CMDC(x)

≥ c(x) + C̃o(x)(1− ε)
c(x) + CMDC(x)

> (1− ε)(1− CMDC(x)− C̃o(x)
c(x) + CMDC(x)− C̃o(x)

)

≥ (1− ε)(1− CMDC(x)− C̃o(x)
δcd + CMDC(x)− C̃o(x)

)

The second inequality follows from the fact that Co(x) ≥ C̃o(x)(1− ε), and the
last inequality follows from the fact that c(x) ≥ δcd.

Let f(w) = w/(a + w), then f(w) is monotone increasing. Define w =
CMDC(x) − C̃o(x), and a = δcd; then, using (2), we get that 1 − w/(a + w) ≥
1−Rcd/(δcd +Rcd) ≥ 1−ε. Thus, we get that Co/CMDCε

≥ (1−ε)2. By taking
in the scheme ε̃ = ε/2 we get the statement of the theorem.

Next, we show (ii). Note that |Ω| = O(N δ), since the number of possible
choices of N non-negative integers, whose sum is at most δ is bounded by

(
N+δ

δ

)
.

Now, given a vector x ∈ Ω, we can compute CMDC(x) in O(NR) steps, since at
most R variables out of zd+1, . . . , zN can have non-zero values. Multiplying by
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the complexity of the FPTAS for fractional covering, as given in Lemma 4, we
get the statement of the theorem.

Recall that DSP with unbounded supply is equivalent to CIP∞.

Corollary 3. There is a PTAS for CIP∞ with n variables and fixed dimension,
R, whose running time is O(nR/ε · 1

ε2 log C).

3 Deal Splitting with Price Tables
When R is fixed, DST can be solved in pseudo-polynomial time. In particular,

Theorem 5. The DST problem can be optimally solved in O(
∑

i mi ·
∏R

j=1 n2
j ).

3.1 A PTAS for DST

We now describe a PTAS for DS with price tables and fixed number of goods. Our
scheme applies to any instance of DST satisfying the following properties. (P1)
Volume discount. If we increase the quantity bought from each of the goods, the
unit cost can only decrease; that is, let (a1

1, . . . , a
1
R), (a2

1, . . . , a
2
R) be two vectors

representing feasible sales for Si, for some 1 ≤ i ≤ m. If a2
j ≥ a1

j for all 1 ≤ j ≤ R,
then the unit costs corresponding to the two vectors satisfy c2

j ≤ c1
j for all j.

(P2) Dominance. If the vectors (d1
1, . . . , d

1
R), (d2

1, . . . , d
2
R) represent valid sales

(vis a vis the price table) for Si, then the vector max((d1
1, . . . , d

1
R), (d2

1, . . . , d
2
R))

also represents a valid sale for Si, where the maximum is taken coordinate-wise.
Table 1 (in the Appendix) satisfies the volume discount and the dominance
properties.

We note that the properties (P1) and (P2) are quite reasonable in commer-
cial scenarios, reflecting the desire of each seller to increase its part in the deal,
by selling more units from each of the goods. (P1) implies that as the quanti-
ties increase, the unit prices decrease; (P2) allows for more combinations of the
goods for the buyer.6 It can be shown (by reduction from Partition) that DST
is NP-hard even for instances that satisfy properties (P1) and (P2), already for
R = 1.

Assume that we know the optimal cost, C, for our instance. Then, for a given
value of ε > 0, we define an instance of R-MMCK, whose optimal solution in-
duces a solution for DST with cost at most (1 + ε)C. We then find an optimal
fractional solution for the R-MMCK instance. This gives an almost optimal frac-
tional solution for the DST instance. Finally, we use non-standard rounding to
obtain an integral solution whose cost is within factor (1+ε) from the fractional
solution. Note that C can be ‘guessed’ in polynomial time within factor (1 + ε),
using binary search over the range (0, mR · maxi,j max1≤�≤mi

u�jc�j), i.e., we
allow to take the maximum number of units from the j-th good in the �th range,
for 1 ≤ � ≤ mi 1 ≤ i ≤ m, 1 ≤ j ≤ R.

6 It is easy to modify any price table to one that satisfies (P2). We elaborate on that
in the full version of the paper.
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Reduction to the R-MMCK Problem: Given the value of C, the parameter
ε and a DST instance with m price tables, we construct an R-MMCK instance
which consists of a single R-dimensional knapsack with capacities bj = nj , 1 ≤
j ≤ R, and m sets of items; each set Ai has mi · (m/ε)R items, 1 ≤ i ≤ m. Each
of the items in Ai represents a sale of the i-th seller, which (partially) satisfies
the order. Specifically, each item in Ai is an integer vector (i, �, k1, . . . , kR),
where � is the range in the i-th price table from which we choose the goods, and
0 ≤ kj ≤ m/ε is the contribution of the j-th good, bought from the i-th seller,
to the total cost. We take this contribution as an integral multiple of εC/m; for
each vector we find the maximal number of units of each good that can be bought
with this vector. If for some integer g ≥ 1, kjεC/m < gc�j ≤ (kj + 1)εC/m then
we buy g units from the good and round down the cost to kjεC/m. The cost
of an item (i, �, k1 . . . , kR) in Ai is given by c(i, �, k1 . . . , kj) = εC/m

∑R
j=1 kj .

We denote by sj(i, �, k1 . . . , kR) the maximum total number of units of the j-th
good that can be bought from Si at the cost kjεC/m, 1 ≤ j ≤ R.

Approximating the Optimal Solution for R-MMCK: Given an instance
of R-MMCK, we ‘guess’ the set S of items of maximal costs in the optimal
solution, where |S| = h = min(m, 	 2R(1−ε)

ε 
). Let E(S) be the subset of items
with costs that are larger than the minimal cost of any item in S, that is,
E(S) = {(i, �, k1, . . . , kR) /∈ S | c(i, �, k1, . . . , kR) > cmin(S)}, where cmin(S) =
min(i,�,k1,...,kR)∈S c(i, �, k1, . . . , kR).

We select all the items (i, �, k1, . . . , kR) ∈ S and eliminate from the instance
all the items (i, �, k1, . . . , kR) ∈ E(S) and the sets Ai from which an item has
been selected. In the next step we find an optimal basic solution for the following
linear program, in which xi,�,k1,...,kR

is an indicator variable for the selection of
an item (i, �, k1, . . . , kR) /∈ S ∪ E(S).

(LP (S)) min
m∑

i=1

mi∑
�=1

∑
k1,...,kR

c(i, �, k1, . . . , kR)xi,�,k1,...,kR

s.t.

mi∑
�=1

∑
k1,...,kR

xi,�,k1,...,kR
≤ 1 for i = 1, . . . , m

m∑
i=1

mi∑
�=1

∑
k1,...,kR

sj(i, �, k1, . . . , kR)xi,�,k1,...,kR
≥ nj , 1 ≤ j ≤ R

0 ≤ xi,�,k1,...,kR
≤ 1 for (i, �, k1, . . . , kR) /∈ S ∪ E(S)

Rounding the Fractional Solution: Given an optimal fractional solution for
R-MMCK, we now return to the DST instance and get an integral solution as
follows. Suppose that we have D = D(i) fractional variables for some set Ai,
xi,�1,k11,...,k1R

, . . . , xi,�D,kD1,...,kDR
, then we buy from the i-th seller max1≤d≤D

sj(i, �d, kd1, . . . , kdR) units of the j-th good, 1 ≤ j ≤ R.
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3.2 Analysis

We now show that the above scheme yields a (1 + ε)-approximation for the
optimum cost for DST, and that the resulting (integral) solution is feasible.

Lemma 5. If there exists an optimal (fractional) solution with cost C for the
R-MMCK instance, then there exists a (fractional) solution with cost at most
(1 + ε)C for the DST instance.

Proof. For any ε′ > 0, in any fractional solution for R-MMCK with ε′, the cost
of each of the selected items (i, �, k1 . . . , kR) in the DST instance is at most
(c(i, �, k1 . . . , kR) + Rε′C/m)xi,�,k1...,kR

. Since
∑mi

�=1
∑

k1,...,kR
xi,�,k1,...,kR

≤ 1,
for all 1 ≤ i ≤ m this yields an increase of at most Rε′C/m for the seller Si. By
taking ε′ = ε/R, we get that the overall increase in the cost is Rε′C = εC.

Lemma 6. The integral solution obtained from the fractional solution for LP(S)
yields a ratio of at most (1 + ε) to the optimal cost for the DST instance.

Proof. Let x∗ be an optimal (integral) solution for the linear program LP(S),
and let S∗ = {(i, �, k1, . . . , kR)| x∗

i,�,k1,...,kR
= 1} be the corresponding subset of

items. As in the proof of Lemma 1, we may assume that |S∗| ≥ h, otherwise we
are done. Let

S∗ = {(i1, �1, k11, . . . , k1R), . . . , (ir, �r, kr1, . . . , krR)},

such that c(i1, �1, k11, . . . , k1R) ≥ · · · ≥ c(ir, �r, kr1, . . . , krR), for some r > h,
and let

S∗
h = {(i1, �1, k11, . . . , k1R), . . . , (ih, �h, kh1, . . . , khR)}.

Let σ =
∑h

t=1 c(it, �t, kt1, . . . , ktR) be the total cost of the items in S∗
h. Then, for

any item (i, �, k1, . . . , kR) /∈ (S∗
h ∪ E(S∗

h)), c(i, �, k1, . . . , kR) ≤ σ/h.
We use below the notation sj(d) when referring to sj(i, �d, kd1, . . . , kdR). Let

c(max1≤d≤Dsj(d)) be the total cost of buying the j-th good in the entry of the
price table where we obtain max1≤d≤Dsj(d) units form good j, 1 ≤ j ≤ R. The
heart of the proof is the following claim.

Claim 1. For any 1 ≤ i ≤ m, the cost of buying from the i-th seller satisfies

R∑
j=1

c(max1≤d≤Dsj(d)) ≤
D∑

d=1

c(i, �d, kd1, . . . , kdR).

Proof. By our rounding technique, the vector giving the amounts bought from
Si from each of the goods satisfies (max1≤d≤Ds1(d), . . . , max1≤d≤DsR(d)) ≥
(s1(i, �d, kd1, . . . , kdR), . . . , sR(i, �d, kd1, . . . , kdR)), for all 1 ≤ d ≤ D. By the
volume discount property, the total cost of the rounded solution satisfies
c(max1≤d≤Ds1(d), . . . , max1≤d≤DsR(d)) ≤∑D

d=1 c(i, �d, kd1, . . . , kdR).

Let z∗ denote the optimal (integral) solution for the R-MMCK instance.
Denote by xB(S∗

h) a basic solution for LP(S), and let xI(S∗
h) be an integral
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solution obtained by setting xi,�d,kd1,...,kdR
= 1 for all 1 ≤ d ≤ D. From Claim 1,

we can bound the total cost of the solution output by the scheme, ẑ, by comparing
z∗ to the cost of xI(S∗

h). In particular,

z∗ ≥
m∑

i=1

mi∑
�=1

∑
k1,...,kR

c(i, �, k1, . . . , kR)xB
i,�,k1,...,kR

(S∗
h)

≥
m∑

i=1

mi∑
�=1

∑
k1,...,kR

c(i, �, k1, . . . , kR)xI
i,�,k1,...,kR

(S∗
h)− δ

where δ =
∑

(i,�,k1,...,kR)∈F c(i, �, k1, . . . , kR), and F is the set of items for which
the basic variable was a fraction, i.e., F = {(i, �, k1, . . . , kR)| xB

i,�,k1,...,kR
(S∗

h) < 1}
Assume that in the optimal (fractional) solution of LP (S∗

h) there are L tight
constraints, where 0 ≤ L ≤ m + R, then in the basic solution xB(S∗

h), at most
L variables can be strictly positive. Thus, at least L − 2R variables get an
integral value (i.e. ‘1’), and |F | ≤ 2R. Note that, for any (i, �, k1, . . . , kR) ∈ F ,
c(i, �, k1, . . . , kR) ≤ σ/h, since F ∩ (S∗

h ∪ E(S∗
h)) = ∅. Hence, we get that z∗ ≥

ẑ + 2Rσ
h ≥ ẑ + 2Rẑ

h ≥ ẑ
1−ε .

Now, from Lemma 5, we have (1+ε)2-approximation for DST, and since C is
guessed within factor 1+ ε, we get a (1+ ε)3-approximation. By taking ε′ = ε/4
we get the statement of the lemma.

Lemma 7. The integral solution obtained by the rounding is feasible for DST.

Combining the above lemmas we get:

Theorem 6. There is a polynomial time approximation scheme for any DST
instance satisfying properties (P1) and (P2), with fixed number of goods.
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A Deal Splitting with Price Tables - An Example

Suppose that R = 3 and the goods are printers, cartridges and paper boxes.
Table 1 gives the possible combinations of goods for the seller S1, specified by
amounts and unit costs, in 3 price ranges (i.e., m1 = 3).
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Table 1. A price table for multiple (3) goods

Price range Printers Cartridges Paper
1 (0, 2, 300) (0, 5, 30) (0, 9, 15)
2 (3, 5, 280) (7, 9, 25) (10, 100, 10)
3 (6, 20, 250) (10, 50, 23) (10, 100, 10)

Thus, if we buy 2 printers or less, the unit cost is 300, whereas the unit cost
for buying 3 ≤ p ≤ 5 printers is 280. A valid sale for S1 is the combination
(1, 0, 7), in which we obtain a printer and 7 paper boxes. The cost of this sale,
which corresponds to the first price range, is 405.
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Abstract. We continue the study of priority or “greedy-like” algorithms as ini-
tiated in [6] and as extended to graph theoretic problems in [9]. Graph theoretic
problems pose some modelling problems that did not exist in the original applica-
tions of [6] and [2]. Following [9], we further clarify these concepts. In the graph
theoretic setting there are several natural input formulations for a given problem
and we show that priority algorithm bounds in general depend on the input for-
mulation. We study a variety of graph problems in the context of arbitrary and
restricted priority models corresponding to known “greedy algorithms”.

1 Introduction

The concept of a greedy algorithm was explicitly articulated in a paper by Edmonds [11],
following a symposium on mathematical programming in 1967 although one suspects
that there are earlier references to this concept. Since that time, the greedy algorithm
concept has taken on a broad intuitive meaning and a broader set of applications beyond
combinatorial approximation. The importance of greedy algorithms is well motivated by
Davis and Impagliazzo [9] and constitutes an important part of many texts concerning
algorithm design and analysis. New greedy algorithms keep emerging, as, for instance,
in [18], which considers mechanisms for combinatorial auctions, requiring solutions
to difficult optimization problems. Given the importance of greediness as an algorithm
design “paradigm”, it is somewhat surprising that a rigorous framework, as general
as priority algorithms, for studying greedy algorithms is just emerging. Of course, the
very diversity of algorithms purported to be greedy makes it perhaps impossible to find
one definition that will satisfy everyone. The goal of the priority algorithm model is to
provide a framework which is sufficiently general so as to capture “most” (or at least
a large fraction) of the algorithms we consider to be greedy or greedy-like while still
allowing good intuition and rigorous analysis, e.g., being able to produce results on the
limitations of the model and suggesting new algorithms.

The priority model has two forms, fixed priority and the more general adaptive priority
model. The general form of fixed and adaptive priority algorithms is presented in Figures
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Determine an allowable ordering of the set of possible input items
(without knowing the actual input set S of items)
while not empty(S)

next := index of input item I in S that comes first in the ordering
Make an irrevocable decision concerning Inext and remove Inext from S

Fig. 1. The form of a fixed priority algorithm

while input set S not empty
Determine a total ordering of all possible input items
(without knowing the input items in S not yet considered)
next := index of item I in S that comes first in the ordering
Make an irrevocable decision concerning Inext and remove Inext from S

Fig. 2. The form of an adaptive priority algorithm

1 and 2. To make this precise, for each specific problem we need to define the nature and
representation (the type) of the input items and the nature of the allowable (irrevocable)
decisions. Surprisingly, the issue as to what orderings are allowed has a rather simple
and yet very inclusive formalization. Namely, the algorithm can use any total ordering on
some sufficiently large set of items from which the actual set of input items will come.
(For adaptive algorithms, the ordering can depend on the items already considered.)
The priority framework was first formulated in Borodin, Nielsen and Rackoff [6] and
applied to (worst case approximation algorithms for) some classical scheduling problems
such as Graham’s makespan problem and various interval scheduling problems. In a
subsequent paper, Angelopoulos and Borodin [2] applied the framework to the set cover
and uncapacitated facility location problems. These problems were formulated so that
the data items were “isolated” in the sense that one data item did not refer to another data
item and hence any set of valid data items constituted a valid input instance. For example,
in the makespan problem on identical machines with no precedence constraints, a data
item is represented by a processing time and the items are unrelated. The version of
facility location studied in [2] was for the “disjoint model” where the set of facilities
and the set of clients/cities are disjoint sets and a facility is represented by its opening
cost and a vector of distances to each of the cities. In contrast, in the “complete model”
for facility location, there is just a set of cities and every city can be a facility. Here a
city is represented by its opening cost and a vector of distances to every other city. In
the complete model for facility location, an input item (a city) directly refers to other
input items. This is similar to the standard situation for graph theoretic problems when
vertices are, say, represented by adjacency lists.
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The work of Davis and Impagliazzo [9] extends the priority formulation to graph
theoretic problems. Davis and Impagliazzo consider a number of basic graph theory
problems (single source shortest path, vertex cover, minimum spanning tree, Steiner
trees, maximum independent set) with respect to one of two different input models de-
pending on the problem and known “greedy algorithms”. For the shortest path, minimum
spanning tree and Steiner tree problems, the model used is the “edge model”, where in-
put items are edges represented by their weights, the names of the endpoints, and in the
case of the Steiner tree problem by the types (required or Steiner) of the edge endpoints.
Note that in this edge representation, input items are isolated and all of the definitions
in [6] can be applied. In particular, the definition of a greedy decision is well defined.
In contrast, for the vertex cover and maximum independent set problems, Davis and
Impagliazzo use a vertex adjacency list representation, where input items are vertices,
represented by the names of the vertices to which they are adjacent, and in some prob-
lems also the weight of the vertex. This representation presents some challenges for
defining priority algorithms and greedy decisions. These definitional issues have helped
to clarify the nature and usefulness of “memoryless priority algorithms”.

Noting that lower bounds for graph theoretic priority algorithms appear to be hard
to obtain in (say) the vertex adjacency model, Angelopoulos has recently [1] proposed
a reasonable change to the model by restricting what priority algorithms can do, thus
increasing the power of the adversary. The basic effect of his change is to force items
which are indistinguishable (except for their different identification labels) to receive
the same priority. Angelopoulos proves lower bounds for the complete facility location
problem (for both fixed and adaptive priority algorithms) and the dominating set problem
(for the more general adaptive priority algorithms). It is not clear ifAngelopoulos’results
can be obtained in the model which we use, but even if they can, this simple restriction
on priority algorithms should make it easier to derive lower bound proofs.

In this paper, we continue the study of priority algorithms for graph problems using
two models (again motivated by current algorithms), namely the vertex adjacency model
as in Davis and Impagliazzo and an “edge adjacency model”, where input items are ver-
tices now represented by a list of adjacent edge names (rather than a list of adjacent
vertex names) and possible vertex weights where appropriate. It should be clear that the
vertex adjacency model is more general in the sense that any priority algorithm in the
edge adjacency model can be simulated in the vertex adjacency model (making exactly
the same set of decisions). Most existing priority algorithms can function in the edge ad-
jacency model; the authors were unable to recall one which does not. However, we show
(using an example in Davis and Impagliazzo showing that memorylessness is restrictive)
that the edge adjacency model can be restrictive. We also introduce an “acceptances-
first” model and clarify the relation of memoryless algorithms to this “acceptances-first”
model rather than to greediness. We prove a number of new results within these models.
Due to space limitations, some proofs have been omitted, but they can be found in [7].

2 Priority Algorithms for Graph Problems

As mentioned in the introduction, we consider two input formulations. In the com-
mon vertex adjacency formulation, an input item is a vertex, represented by the tuple
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(v, w, v1, v2, . . . , vd), where v is the name of the vertex, w is the weight (if any) of vertex
v and v1, . . . , vd is a list of adjacent vertices. In the more restrictive edge adjacency for-
mulation (but still a model sufficient to capture most known greedy graph algorithms),
an input item is a vertex (v, w, e1, e2, . . . , ed) where again v is the vertex name, w is the
weight (if any) of v and e1, e2, . . . , ed is a list of adjacent edges.

In either of the above models, we have the situation that not every set of valid input
items constitutes a valid input instance. Clearly, a valid input instance cannot have the
same vertex appear as two different items. And in the vertex adjacency model, if a vertex
v is an input item and v′ is in its adjacency list then v′ must also be an input item with
v in its adjacency list. Similarly, if an edge e appears in some input item then e must
appear in exactly one other input item. Although the priority algorithm framework is
designed to model greedy algorithms, it is possible to define priority algorithms where
the irrevocable decisions do not seem greedy. As noted by Davis and Impagliazzo, the
definition of “greedy decision” (as formulated in [6]) is no longer well defined when the
algorithm “knows” that the current item is not the last. More specifically, in [6], a greedy
priority algorithm is one in which all of the irrevocable decisions are “greedy” in the
sense that the algorithm acts as if the current item being considered is the last item in
the input. In more colloquial terms, greediness is defined by the motto “live for today”.
We would like to formulate a general concept of a greedy decision that also makes sense
when the input items are not isolated. (We would like such a definition to also make sense
for non-graph problems such as scheduling problems with precedence relations amongst
the jobs where one can have non-isolated input items.) We offer one such definition in
[7]. We note, however, that in the context of priority algorithms the greedy versus non
greedy distinction is not that important and to the extent that it is important it is only
because greedy is such a widely used (albeit mostly undefined) concept. We do argue
that the priority algorithm formulation is important as it captures such a wide variety
of existing algorithms which might be called “greedy-like” extending the concept of
greedy and including (for example) all online algorithms.

One can always make an ad hoc definition of a greedy decision in the context of
any given problem. For example, for the vertex coloring problem, one might define a
greedy decision to be one that never assigns a new color to a vertex if an existing color
could be used now. But for a given input and history of what has been seen, it may be
known to the algorithm that any valid completion of the input sequence will force an
additional color and it might be that in such a case one would also allow a new color to
be used before it was needed. This can, of course, all be considered as a relatively minor
definitional issue and one is free to choose whatever definition seems to be more natural
and captures known “greedy algorithms”.

Perhaps a more meaningful distinction is the concept of “memoryless” priority algo-
rithms. Although motivated by the concept of memoryless online algorithms, especially
in the context of the k-server problem, the concept of memorylessness takes on a some-
what different meaning as applied in [6] and [2]. Namely these papers apply the concept
to problems where the irrevocable decision is an accept/reject decision (or at least that
acceptance/rejection is part of the irrevocable decision). In this context memoryless pri-
ority algorithms are defined as priority algorithms in which the irrevocable decision for
the current item (and the choice of next item in the case of adaptive algorithms) depends
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only on the set of previously accepted items. That is, in the words of [9], a rejected item
is treated as a NO-OP. In the accept/reject context, memoryless algorithms are equiva-
lent to acceptances-first algorithms which do not accept any items after the first rejected
item. As observed1 in [6] and [2], we have the following:

Theorem 1. Let A be a memoryless priority algorithm for a problem with accept/reject
decisions. Then there exists an “acceptances-first” adaptive priority algorithm A′ that
“simulates” A in the sense that it accepts the same set of items and makes the same
irrevocable decisions.

We observe that many graph theoretic algorithms called greedy may or may not
satisfy some generic general definition of greedy. But many of these algorithms are
indeed memoryless (or equivalently, acceptances-first) according to the above definition.
(By the definition of memoryless, the converse of the above theorem holds trivially.)

To prove negative results, showing that no priority algorithm in some model can
achieve an approximation ratio better than ρ for a given problem P , we use an adversary.
The adversary initially chooses a set S of valid input items. It interacts with an algorithms
A, maintaining the invariant that the items remaining in S, together with the items already
selected by A, contain at least one valid input instance. At each step, the adversary
removes the item i remaining in S, to which A has given the highest priority. It may also
remove more items from S at this point, as long as the invariant is maintained.

In most cases the initial set S contains multiple copies of each vertex and possibly
additional vertices than in the final input graph. After the algorithm chooses a vertex,
the adversary removes the other copies of that vertex from S, since its adjacency list
is now determined. An adaptive priority algorithm in the edge-adjacency model knows
the names of the edges adjacent to the vertices already chosen, so it can give vertices
with the same edges in their lists either high or low priority. The adversary may still
have more than one copy of the neighbors at this time, though. In the vertex adjacency
model, an adaptive priority algorithm has even more power; it can give the neighbors
high or low priority and it can also give the neighbors of the neighbors high or low
priority, since it knows the names of the neighbors. Although the adversary may still
retain multiple copies of the neighbors, it cannot make arbitrary decisions as to whether
or not a vertex chosen by the algorithm is or is not at distance at most two from any
chosen vertices.

For some scheduling results in [6], the adversaries assume that the algorithm does not
know (or use information concerning) the final number of jobs to be processed. The same
holds here for graph problems; in some cases the adversary creates final input graphs
that have different sizes for different algorithms. In practice, most priority algorithms do
not seem to use the total number of vertices or edges in the graph in assigning priorities
or in making the irrevocable decisions, so the results based on adversaries of this type
are widely applicable. Unless otherwise stated, the results below assume the algorithm
does not know the total number of vertices or edges in the graph.

1 In [6], this fact is stated in terms of memoryless algorithms being simulated by greedy algo-
rithms, but the essence of that observations really concerns the acceptance-first restriction and
not greediness.
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3 Independent Set

Maximum Independent Set is the problem of finding a largest subset, I , of vertices in a
graph such that no two vertices in I are adjacent to each other.

The independent set problem and the clique problem, which finds the same set in
the complement of the graph, are well studied NP-hard problems, where approximation
also appears to be hard. The bounded degree maximal independent set problem is one
of the original MAX SNP-Complete problems [19]. Håstad [13] has shown a general
lower bound on the approximation ratio for the independent set problem of n1−ε, for all
ε, provided that NP �= ZPP, where ZPP is the class of languages decidable by a random
expected polynomial-time algorithm that makes no errors. A general upper bound of
O(n/ log2 n) was presented by Boppana and Halldórsson [5], and an upper bound for
graphs of degree 3 of 6/5 was shown by Berman and Fujito [4]. These algorithms are
not priority algorithms.

Davis and Impagliazzo [9] have shown that no adaptive priority algorithm (in the
vertex adjacency model) can achieve an approximation ratio better than 3

2 for the max-
imum independent set problem2, and their proof used graphs with maximum degree 3.
We consider algorithms in more restrictive models. We again note that many known
greedy-like graph algorithms are acceptances-first priority algorithms.

In the proofs of Theorems 2, 3, and 8, the adversary uses a modification of a con-
struction due to Hochbaum [15].

Construction G: There are two sets of vertices, U and V . The set U consists of k
independent (k+1)-cliques, and the set V is an independent set consisting of k2 vertices,
each of which is adjacent to every vertex in every (k + 1)-clique.

Note that all vertices in G have degree k2 + k. Thus, initially, A cannot distinguish
between the vertices when assigning priorities. The optimum independent set includes
every vertex in V and has size k2. If n is the total number of vertices in G, k ∈ Θ(

√
(n)).

Theorem 2. No acceptances-first adaptive algorithm A in the vertex adjacency model
for independent set can achieve an approximation ratio better than Ω(

√
n), where n is

the number of vertices (even if the number of vertices and edges in the graph is known
to the algorithm).

The proof of this result depends on the first vertex being accepted. One can obtain a
similar result, removing the acceptances-first assumption, if the algorithm A is a fixed
priority algorithm in the edge adjacency model.

Theorem 3. No fixed priority algorithm A in the edge adjacency model for independent
set (or clique) can achieve an approximation ratio better than Ω(n1/3), where n is the
number of vertices.

Proof. The adversary uses possibly several copies of the construction, G. Since A is a
fixed priority algorithm and all vertices have the same degree, A cannot distinguish the
vertices when assigning priorities.

2 We have defined the approximation ratio so that all ratios are at least one.
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The adversary arranges that the selected vertices are independent during the first
phase. We let n′ denote the number of vertices processed so far. The first phase continues
until either A has accepted at least c = �n′

k 
 vertices or n′ = k2; whichever happens first.
If the first phase stopped because at least c vertices were accepted, then the adversary

creates c copies of the construction G. There are enough cliques so that each of the n′

vertices can be placed in distinct cliques in U . The accepted vertices are placed such that
at most one is in each construction. This means that in each construction, G, all vertices
in V must be rejected. In addition, the algorithm can accept at most 1 vertex in every
clique in U . This gives a ratio of at least c·k2

c·k = k = Ω(n1/3).
If the first phase stopped because n′ = k2, the adversary uses a single copy of the

construction, G. The n′ vertices are in V . Note that the number of accepted vertices is
strictly smaller than �k2

k 
 = k, since otherwise the algorithm would have terminated
for that reason. If any of the n′ vertices are accepted, then no vertices from U can be;
otherwise at most one vertex from each clique can be accepted. Thus, the best ratio is
when all n′ vertices from phase one are rejected: k2

k = k = Ω(
√

n). ��

Combining the acceptances-first requirement with the fixed priority requirement,
gives a model which is so weak that it appears to be uninteresting. Consider, for example,
a complete bipartite graph with n vertices in each part. All vertices look the same to the
algorithm as it assigns priorities, so the adversary can decide that the two vertices with
highest priority are adjacent. If the algorithm is acceptances-first, since it must reject the
second vertex, it cannot accept more than one vertex in all.

Our next result is based on the example used in Davis and Impagliazzo to show
that memoryless priority algorithms are less powerful than those which use memory.
Namely, we consider WIS(k), the weighted maximum independent set problem when
restricted to cycles whose vertex weights are either 1 or k. In their proof separating the
power of memoryless algorithms from those which use memory, Davis and Impagliazzo
show that in the vertex adjacency model there is an adaptive priority algorithm whose
approximation ratio approaches one as k goes to infinity. We now show a lower bound of
3
2 for the approximation ratio for this same problem in the edge adjacency model, thus
showing that the edge adjacency model can be restrictive when compared to the vertex
adjacency model.

Theorem 4. For the WIS(k) problem with k ≥ 4, no adaptive priority algorithm in the
edge adjacency model can obtain an approximation ratio better than 3

2 .

Proof. We will represent the cycles by lists of weights. Two neighbors in the list are also
neighbors in the cycle. In addition, the first and last element in the list are also neighbors
in the cycle.

We use w+ to denote a vertex accepted by the priority algorithm and w− to denote
a vertex rejected by the priority algorithm. To demonstrate a best possible result which
the priority algorithm can obtain given the accept/reject actions it has already made, we
use wc to mark vertices which could be included in addition to the already accepted
vertices. Finally, we indicate an optimal vertex cover by marking vertices in one such
cover by w. Neither the vertices marked wc nor w can in general be chosen uniquely,
but their total weight will be unique.
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The argument is structured according to the choices made by the priority algorithm,
beginning with whether the first vertex has weight 1 or k and whether the priority
algorithm accepts or rejects that vertex. In all but one case, the adversary can immediately
guarantee a specific approximation ratio, but in one case, the next vertex chosen by the
algorithm must also be used by the adversary:

First accept weight k vertex: (k+, k, 1c, k) gives 2k
k+1 .

First reject weight k vertex: (k−, 1c, 1) gives k
1 .

First accept weight 1 vertex: (1+, k, 1c, k) gives 2k
2 .

First reject weight 1 vertex: We now ensure that no vertex of weight k will appear
as a neighbor of the rejected vertex. All the remaining cases are subcases of the current
case.

Next accept non-neighbor weight k vertex: (1−, 1c, k, k+, k, 1c) gives 2k+1
k+2 .

Next accept non-neighbor weight 1 vertex: (1−, 1c, k, 1+, 1) gives k+1
2 .

Next accept neighbor weight 1 vertex: (1−, 1+, k, 1c) gives k+1
2 .

Next reject non-neighbor weight k vertex: (1−, 1c, k−, 1c) gives k+1
2 .

Next reject non-neighbor weight 1 vertex: (1−, 1c, 1, 1−, 1, 1c) gives 3
2 .

Next reject neighbor weight 1 vertex: (1−, 1−, 1, 1c) gives 2
1 .

Choosing k ≥ 4 ensures the stated approximation ratio lower bound of 3
2 . ��

The following result shows that a 3
2 approximation ratio for WIS(k) can be achieved

in the edge adjacency model3.

Theorem 5. For the WIS(k) problem, there is an adaptive priority algorithm in the edge
adjacency model with approximation ratio 3

2 for k ≥ 2.

Proof. The algorithm proceeds as follows:
I. Give highest priority to vertices with weight 1 which are not adjacent to anything

processed yet, as long as this is possible. Reject them all.
II. If there were no vertices of weight 1, accept one of weight k. Then follow it

around the cycle, accepting every other vertex until finding a vertex adjacent to two
already processed vertices. That last vertex must be rejected.

III. Repeat the next two steps as long as possible:

1. If there is a vertex with both neighbors already processed, accept it. (The neighbors
have been rejected.)

2. If there is vertex with weight k adjacent to exactly one vertex which was already
processed, accept it. Then, reject its other neighbor.

IV. If there are any vertices remaining, there must be a vertex of weight 1 adjacent
to only one already processed vertex. Reject this vertex of weight 1 and accept its
unprocessed neighbor. Follow this around the cycle, accepting every other vertex until
reaching a vertex which has already been processed. Repeat this step until all processed
chains have been joined.

3 In contrast, for the WIS problem in the vertex adjacency model, Davis and Impagliazzo show
a 2-approximation lower bound for memoryless algorithms.
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Note that this algorithm maintains the invariant that for any maximal chain of vertices
already processed, the endpoints have been rejected. The remainder of the proof is a case
analysis and is given in [7]. ��

4 Vertex Cover

Minimum Vertex Cover is the problem of finding a smallest subset, C, of vertices in a
graph such that all edges are incident to some vertex in C.

The unweighted vertex cover problem is one of the most celebrated open problems
in the area of worst case approximation algorithms. The naive algorithm (taking both
adjacent vertices in any maximal matching) provides a 2-approximation. This is essen-
tially the best known polynomial time approximation bound in the sense that there are
no known polynomial time 2 − ε approximation algorithms (for a fixed ε > 0), al-
though various algorithms are known that guarantee an approximation better than 2 but
converging to 2 as some parameter grows. This maximal matching algorithm is easily
seen to be an acceptances-first adaptive priority algorithm in the edge adjacency model.
Surprisingly, Johnson [16] showed that the greedy algorithm which chooses the vertex
with highest degree in the remaining graph is only a Hn-approximation, and that this
bound is tight in that there are arbitrarily large graphs on which the algorithm produces a
vertex cover whose size is Hn times the size of the optimal cover. Although the weighted
vertex cover problem can be essentially reduced (in polynomial time) to the unweighted
case (by making multiple copies of vertices), this reduction does not preserve the prop-
erty of being a priority algorithm and hence the study of the unweighted and weighted
vertex cover problems may be substantially different problems in the context of priority
algorithms. It turns out that there are several priority algorithms for the weighted case
that also achieve a 2-approximation algorithm (or slightly better). One such algorithm
is Johnson’s “greedy algorithm” (the layered algorithm as given in Vazirani’s excellent
text on approximation algorithms [21]). Essentially for the vertex cover problem this
algorithm chooses all maximum degree vertices and removes them simultaneously. An-
other simple to state (and also called greedy) algorithm is given by Clarkson [8]. This
algorithm achieves the approximation bound Δ

Δ−2 (2− 2n
Δ·OPT (I) ) where Δ is the max-

imum degree in the graph and n is the number of vertices 4. Both the layered algorithm
and Clarksons’s algorithm can be expressed as acceptances-first adaptive algorithms in
the edge adjacency model. In terms of complexity lower bounds, Dinur and Safra [10]
provide a sophisticated proof that it is NP-hard to have a c-approximation algorithm for
the (unweighted) vertex cover problem for c < 1.36.

Davis and Impagliazzo show that for the weighted case, priority algorithms (in the
vertex adjacency model) cannot essentially do better than a 2-approximation. Priority
lower bounds for the unweighted case seem more difficult.

The following 4
3 lower bound matches the upper bound by Clarkson for the case

n = 7, Δ = 3, and OPT (I) = 3. In this case, Clarkson’s algorithm on our graph 2 in the

4 The stated bound is not defined for Δ ≤ 2. The more general bound that applies to all Δ is that
w(CMG) ≤ w(COPT ) − 2(n−w(CMG))

Δ
.
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Fig. 3. Graph 1 to the left and graph 2 to the right

proof of the theorem below would give a vertex cover with four vertices. The results
hold for arbitrarily large graphs, since disjoint copies of the constructions can be used.

Theorem 6. No adaptive priority algorithm in the vertex adjacency model can achieve
an approximation ratio better than 4/3 for the vertex cover problem.

Proof. First note that both graphs in Fig. 3 have vertex covers of size 3. We will now
force any adaptive priority algorithm to choose at least 4 vertices.

In the first step, A must choose either a degree 2 or a degree 3 vertex, and it can
choose to accept or reject. We treat these four cases.

If A rejects a degree 2 vertex first, we let it be vertex A in graph 1. If A accepts a
degree 2 vertex first, we let it be vertex B in graph 1. If A rejects a degree 3 vertex first,
we let it be vertex C in graph 1. If A accepts a degree 3 vertex first, we let it be vertex
A in graph 2. ��

Note that the numbers of vertices in the two graphs used in the proof of the above
theorem are the same, so the theorem holds true in a model where the algorithms know
the number of vertices.5 Notice that with graph 2 in the proof, as long as the algorithm
accepts the first vertex it processes, it will accept at least four vertices. Thus, only the
one graph is necessary, when the algorithm is acceptances-first, so the algorithm can be
given the number of vertices and the number of edges.

In more restrictive models, we obtain stronger lower bounds.

Theorem 7. In the vertex adjacency model, no acceptances-first adaptive priority algo-
rithm can achieve an approximation ratio better than 3/2 for the vertex cover prob-
lem (even if the number of edges and vertices in the graph is known to the algo-
rithm).

The proof of the following theorem is very similar to that of Theorem 3.

Theorem 8. No fixed priority algorithm A in the edge adjacency model for vertex cover
can achieve an approximation ratio better than 2.

The 2-approximation algorithms for vertex cover are adaptive rather than fixed pri-
ority, so the above result may not be tight. (We do not know of a fixed priority algorithm
which is an O(1)-approximation algorithm for vertex cover.)

5 If the number of edges should also be the same, we can add a cycle of 4 vertices to graph 2 and
a cycle of 4 vertices with one diagonal to graph 1 and obtain a bound of 6/5.
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5 Vertex Coloring

Minimum Vertex Coloring is the problem of coloring the vertices in a graph using the
minimum number of different colors in such a way that no two adjacent vertices have
the same color. The problem is also known as Graph k-Colorability and as Chromatic
Number.

Hardness results are known for minimum vertex coloring under various complexity
theoretical assumptions: minimum vertex coloring is NP-hard to approximate within
Ω(n1−ε), for all ε, provided that NP �= ZPP [12]. It is NP-hard to approximate within
n

1
5 provided that NP �= coRP and within n

1
7 provided that P �= NP [3].

From [17], it is known that it is NP-hard to 4-color a 3-chromatic graph, NP-hard
to color a k-chromatic graph with at most k + 2�k/3
 − 1 colors, and NP-hard to
approximate within nε for some fixed ε as the chromatic number of graphs tend towards
infinity.

On the positive side, a general upper bound of O(n log log2 n/log3n) is shown by
Halldórsson [14]. In [20], an upper bound of λ(G) + 1 is established, where λ is any
function of graphs G = (V, E) such that

(G′ ⊂ G ⇒ λ(G′) ≤ λ(G)) ∧ λ(G) ≥ min
v∈V

deg(v).

Let d(G) be the maximum over all vertex-induced subgraphs of the minimum degree
in that subgraph. The result in [20] constructively establishes that any graph is d(G)+1
colorable, so a corollary of the theorem below is that the algorithm from [20] is not a
priority algorithm. This theorem is proven using an adversary which is defined using a
lengthy case analysis.

Theorem 9. No priority algorithm in the edge adjacency model can 3-color all graphs
G with d(G) = 2.

In more restrictive models, we obtain stronger lower bounds. The following two
results apply to models which include the simplest and most natural greedy algorithm;
namely, order the vertices in any way and then color vertices using the lowest possible
numbered color.

Theorem 10. Any fixed priority algorithm in the edge adjacency model must use at least
d + 1 colors on a bipartite graph of maximum degree d.

Proof. The adversary will create many independent portions of a bipartite graph, each
with the same number of vertices and the same colors in each part. These portions will
grow in size and it may be necessary to join two portions, making the correct decision
as to which partition of the one portion is placed with which partition of the other. At the
end all vertices will have degree d, so in assigning priorities, the fixed priority algorithm
will continually choose vertices of degree d. Its only choice is which color to give after
it is told which already colored vertices the chosen vertex is adjacent to.

Initially, the adversary will arrange that all vertices chosen are independent. The
number chosen at this stage will be large enough so that there are either d + 1 colors
given or enough vertices given the same color to make the remainder of the proof possible.
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It will be clear that some large number will be sufficient. This stage 1 ends when there
are enough vertices given the same color, which we call color 1.

In stage i, we have a large number of independent bipartite graphs, where both sides
contain vertices with colors 1, 2, ..., i − 1, but no other colors. The vertices chosen are
made adjacent to one vertex of each color 1, 2, ..., i− 1, all from one partition of one of
the graphs. If there are a large enough number of graphs which get the same additional
color on both sides, this color is called color i and the adversary proceeds to stage i+1.
Otherwise, there will eventually be enough graphs given the same two additional colors,
which will be called i and i+1. Graphs of this type can be joined in pairs. For each pair,
the adversary joins them so that both partitions in the resulting bipartite graph have both
colors i and i + 1. Then, the adversary proceeds to stage i + 2.

The adversary stops this process as soon as d + 1 colors have been used, and more
vertices are included to create a bipartite graph where all vertices have degree d. Note
that if fewer than d + 1 colors are used before stage d + 1, a d + 1st color will be used
then, since the vertices in that stage will be adjacent to each of the colors 1, 2, ..., d. If
there is no stage d + 1, because the adversary went from stage d to d + 2, the d + 1st
color was used in stage d. ��

In the next result, we consider adaptive priority algorithms which use different infor-
mation in its two main phases. When assigning priorities to vertices, it only considers the
number of uncolored neighbors a vertex has and the vector (n1, . . . , nk) of the k colors
used so far where ni is the number of nodes that have already been colored with color
i. In this phase, the algorithm may not use information about how many of a vertex’s
neighbors have already been colored or what colors these neighbors have been given. For
the irrevocable decision of coloring a vertex, the color given will simply be a function of
the set of colors already given to the neighbors. This could, for example, be the lowest
possible numbered color.

Theorem 11. Any adaptive priority algorithm in the edge adjacency model, which gives
priorities based only on the current degree of the vertex and the already processed
subgraph, must use d+1 colors on a d-colorable graph of maximum degree d, when the
color given is a function of the set of currently adjacent colors (no state information).

Proof. The adversary uses the following graph. It creates two Kd cliques A and B.
Two selected vertices, a in A and b in B are then connected by an additional edge.
The remaining vertices in A and B may or may not be connected via a single edge
to additional copies of Kd cliques. This will depend on the degree of vertices chosen
by A. At any point in time during the execution of A, A will have a choice of two
consecutive degrees within A, and two (possibly different) consecutive degrees within
B. Whenever it chooses the higher degree, the chosen vertex will be connected to one of
the additional Kd cliques. At most 2d−2 of the additional Kd cliques may be necessary.
The adversary must present this many originally. When a vertex with the lower of the
two possible degrees from A or B is chosen, one of the additional Kd cliques is removed
from the possibilities the adversary gives A, so that vertices not present in the graph are
never chosen.

The adversary will ensure that a is the last of the vertices in A which is colored, and
b is the last in B. Thus, the last one of them colored will be adjacent to d different colors
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and get the d+1st color. When there is a choice between choosing vertices in A or B or
in the additional cliques, vertices from A or B are chosen. For the additional Kd cliques,
if the connecting vertex is chosen after the adjacent vertex in A or B, then there is no
problem; the additional Kd, G, cannot have any influence on A or B. If the connecting
vertex is chosen before the adjacent vertex in A or B, there will be fewer colors used in
G than in A or B, whichever it is adjacent to. So the connecting vertex will be assigned
a color which is already among the neighbors of the connecting vertex in A or B; again
there will be no influence on how A or B are colored. As soon as the connecting vertex
has been chosen, it is connected to some vertex in A or B which has not been colored
yet, further restricting the number of possible vertices of the lower degree.

Note that any graph constructed in this manner is easily d colorable, since the cliques
can be connected via vertices of different colors. ��

6 Conclusions and Open Problems

We have considered priority algorithms in the vertex adjacency and edge adjacency mod-
els, and it was shown that the edge adjacency model can be more restrictive than the
vertex adjacency model. Most known priority algorithms, however, can be implemented
in the edge adjacency model, so it would be interesting to find natural problems (espe-
cially well studied problems) for which the priority input models are provably different
with respect to the best approximation ratio attainable.

Maximum Independent Set and Vertex Cover were studied using both models, and
Vertex Coloring was studied using the edge adjacency model. For problems where a
priority algorithm makes only accept/reject decisions for each vertex, acceptances-first
algorithms are equivalent to memoryless algorithms. The acceptances-first model was
introduced and applied to the Maximum Independent Set and Vertex Cover problems.

Most of the lower bound results do not meet the upper bounds provided by known
algorithms. It would be interesting to close some of these gaps. For example, in the result
for the unweighted vertex cover, our adaptive priority 4/3 lower bound meets Clarkson’s
result in the case when the maximum degree is three. But what if the maximum degree
is larger than three? Can one prove a better lower bound? It has long been an open
problem whether or not the optimal (polynomial time) approximation ratio for vertex
cover is 2− o(1). More generally, establishing tight priority approximation bounds for
unweighted graph optimization problems remains a challenging area for future research.
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Abstract. We consider a Stackelberg pricing problem in directed net-
works. Tariffs have to be defined by an operator, the leader, for a subset
of the arcs, the tariff arcs. Clients, the followers, choose paths to route
their demand through the network selfishly and independently of each
other, on the basis of minimal cost. Assuming there exist bounds on the
costs clients are willing to bear, the problem is to find tariffs such as to
maximize the operator’s revenue. Except for the case of a single client, no
approximation algorithm is known to date for that problem. We derive
the first approximation algorithms for the case of multiple clients. Our
results hold for a restricted version of the problem where each client takes
at most one tariff arc to route the demand. We prove that this problem
is still strongly NP-hard. Moreover, we show that uniform pricing yields
both an m–approximation, and a (1 + ln D)–approximation. Here, m is
the number of tariff arcs, and D is upper bounded by the total demand.
We furthermore derive lower and upper bounds for the approximability
of the pricing problem where the operator must serve all clients, and
we discuss some polynomial special cases. A computational study with
instances from France Télécom suggests that uniform pricing performs
better than theory would suggest.

1 Introduction

The general setup for the tarification problem that we study involves two non-
cooperative groups, an operator that sets tariffs, the leader of the Stackelberg
game, and n clients that have to pay these tariffs, the followers of the Stackelberg
game. More precisely, we assume that a network is given, and a subset of m arcs,
the tariff arcs, are owned by an operator. The operator can set the tariffs on these
arcs for renting capacity to one or several clients. Each client wishes to route
a certain amount of a commodity on a path connecting two vertices. Such a
path can involve one or several arcs belonging to the operator, and we assume
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that each client selfishly selects a path with minimum cost to route his demand.
Before the clients select their paths, the operator has to set the tariffs, which
he does in order to maximize total revenue. In order to avoid non-boundedness,
we assume that clients always have the alternative of routing on a path without
using any of the operators arcs.

The problem we consider here is different in two aspects from the network
congestion problems studied recently, e.g., by Roughgarden and Tardos [11], and
Cole et al. [2, 3]. First, we assume that there is no congestion, hence the clients
do not influence each other. They choose minimum cost paths to route their
commodities, independent of each other. The Game Theoretic setting is only
introduced by the fact that there exist an operator trying to maximize revenue
using high tariffs, and the clients try to avoid high tariffs by choosing minimal
cost paths. Second, the pricing takes place before the users choose their paths, so
we are faced with a Stackelberg game, where the operator (leader) first sets the
tariffs, and then, subject to these tariffs, the clients (followers) react selfishly.

A natural formulation of the problem, referred to as the (general) tarifica-
tion problem, is the bilevel linear formulation of Labbé et al. [9]. They show
that already the problem with a single client is (strongly) NP-hard, given that
also negative tariffs are allowed. Roch et al. [10] show that the single client
problem remains (strongly) NP-hard, even when restricted to nonnegative tar-
iffs. In the same paper, a polynomial time O(lnm)–approximation algorithm for
the problem with a single client is proposed, where m is the number of tar-
iff arcs.

Our Results. We derive the first approximation results for the problem with
multiple clients. However, we consider a restricted variant of the problem, since
we assume that the path taken by any client utilizes at most one tariff arc.
Several applications of this particular tarification problem, to which we refer as
the river tarification problem (RTP) are briefly discussed in Section 2. Section 3
describes the model in detail. In Section 4, we show that the river tarification
problem is (strongly) NP-hard.

The quality of uniform tarification policies, where all arcs are priced with the
same tariff, is analyzed in Section 5. The problem to find an optimal uniform
tariff is well-known to be solvable in polynomial time, even for the general tarifi-
cation problem [12]. We show that uniform tarification is an m–approximation,
and this is tight. Using a simple geometric argument, we also show that uniform
tarification is a (1+lnD)–approximation, which is tight up to a constant factor.
Here, D is the total demand that is served by the operator in an optimal solu-
tion, which is upper bounded by the total demand. Hence, whenever the clients
have unit demand, this yields a (1 + lnn)–approximation.

We also consider another variant of the problem where the operator is forced
to serve all clients. We show in Section 6, by a reduction from Independent Set,
that this problem is not approximable to within a factor O(m1−ε) or O(n1/2−ε),
unless ZPP = NP. (Recall that m is the number of tariff arcs and n is the
number of clients.) On the positive side, we can show that the problem admits
an n-approximation.
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We briefly discuss some polynomially solvable special cases of the river tar-
ification problem in Section 7. Finally, we empirically analyze the quality of
uniform tarification policies in Section 8, using instances from France Télécom.

2 Applications

As an illustration, consider transportation networks that resemble the situation
of a town that is divided by a river. Different traversal possibilities exist, and
some of these are to be priced by an operator. These traversal possibilities are
the tariff arcs in the network. Customers want to route certain commodities from
one side of the river to the other.

Such a network topology may be assumed (after a simple transformation
described below) in telecommunication networks where we know a priori that
the path of each client takes at most one tariff arc. This occurs, e.g., in the
international interconnections market, where several operators offer connections
to a particular country. If we focus on the market for this particular country, we
can assume that it is not profitable for any client to enter the country twice.

For another motivation, consider the internet. Whenever an autonomous sys-
tem (represented by some subnetwork) has to transit data, the data may enter
and exit the autonomous system at different points. Clients have to pay a price
for transmitting data through the autonomous system, yielding revenue for its
owner. The data flow can be modelled such that once it is routed through the
autonomous system, it does not pass a second time, thereby creating an instance
of the river tarification problem.

Finally, in point-to-point markets, a telecommunications operator is offering
bandwidth capacity between two points in different qualities of service (QoS). In
that setting, it is often the case that information is available concerning the prices
customers are willing to pay for different levels of QoS. That pricing problem
can be modelled easily as a river tarification problem, too.

3 Model

An instance of the general tarification problem is a directed graph G = (N,A),
where the arc set A is partitioned into a set of m tariff arcs T ⊆ A and a set of
fixed cost arcs F = A \ T . There are n clients (or commodities) k ∈ {1, . . . , n},
where each client k has a demand dk that has to be routed from source node
sk to target node tk. Because there is no congestion involved, we may assume
without loss of generality that all demand values dk are scaled to be integral.
We define for a commodity k the set of all possible paths from sk to tk by Pk.
The tariff on a tariff arc a ∈ T is denoted by τa, and the vector of all tariffs is
given by τ = (τa)a∈T . The cost of a fixed cost arc a ∈ F is denoted by ca.

The clients route their demands from source to destination according to a
path with minimal total cost, where the total cost of a path is defined as the
sum of the tariffs and fixed costs on the arcs of the path. Whenever the client
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has a choice among multiple paths with the same total cost but with different
revenues for the operator, we assume that the client takes the path that is most
profitable to the operator. This can always be achieved with arbitrary precision
by reducing all tariffs by some small value ε. We assume that an {sk, tk}-path
exists that consists only of fixed cost arcs for every client k ∈ {1, . . . , n}, since
the problem is otherwise unbounded.

Without going into further details, we mention that this tarification problem
is a classical Stackelberg Game that can be modelled as (linear-linear) bilevel
program [9, 1]. It follows from Jeroslow [7] that (linear-linear) bilevel programs
are NP-hard in general. For annotated bibliographies on bilevel programming,
see Vicente and Calamai [13] or Dempe [4].

We next describe a simple transformation of the given graph G that allows
us to restrict to very specific graphs (although probably losing certain graph
properties, such as planarity). When replacing shortest paths using only fixed
cost arcs by direct arcs, and possibly introducing some dummy arcs with zero
or infinite cost, one obtains a shortest path graph model (SPGM) as defined by
Bouhtou et al. [1]. In that model, all tariff arcs are disjoint, and there exists an
arc from any source node sk to the tail node of any tariff arc, and from the head
node of any tariff arc to any target node tk. Moreover, there exists a fixed cost
arc (sk, tk) for all k = 1, . . . , n, and the cost ck is the highest acceptable price
for client k.

The additional assumption in the problem considered in this paper (to which
we refer as the river tarification problem) is the following: Independent of the
tariffs, any client routes his demand only on a path that includes at most one
tariff arc. In the shortest graph path model, that is equivalent to the deletion of
any backward-arc that might exist between the head nodes of tariff arcs back to
tail nodes of other tariff arcs. Figure 1 shows the shortest path graph model of an
instance of the river tarification problem with three tariff arcs and two clients.
The tariff arcs ai, i ∈ {1, 2, 3} are given by the dashed arcs in the network.
We may also assume without loss of generality that all fixed cost arcs incident
with the target nodes tk have zero cost (by adding their costs to the fixed cost
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Fig. 1. River tarification problem with n = 2 and m = 3
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arcs incident with sk). Notice that the only difference to the general tarification
problem described above is the non-existence of backward arcs.

The essential parameters that define an instance of a (river) tarification prob-
lem are therefore the number of tariff arcs m, the number of clients n, the demand
values dk, k ∈ {1, . . . , n}, and the costs ca of the fixed cost arcs a ∈ F . Due to
the fact that any path taken by a client involves exactly one fixed cost arc with
non-zero cost, we may assume without loss of generality that the costs ca of the
fixed cost arcs a ∈ F are integral. Moreover, due to the integrality of the costs of
the fixed cost arcs, it is immediate that any reasonable solution will adopt only
tariffs which are integral, too. Notice that this might not hold for the general
tarification problem, where a path chosen by a client can consist of more than
one tariff arc.

4 Complexity

Roch et al. [10] show that the general tarification problem is NP-hard in the
strong sense, even when restricted to a single client, using a reduction from the
NP-complete problem 3-Sat [5]. Their reduction works for tarification problems
where paths are allowed to use (and indeed, must use) several tariff arcs. We
show that the tarification problem with multiple clients, but restricted to at
most one tariff arc per path, is NP-hard in the strong sense, too.

We also use a reduction from 3-Sat. Therefore, consider a boolean function
f : {0, 1}n → {0, 1} on n variables x1, . . . , xn, in conjunctive normal form. Such
a function f is the conjunction of m clauses Ck,

f =
m∧

k=1

Ck , (1)

each clause Ck being the disjunction of three literals, Ck = (�k1∨ �k2∨ �k3). Any
literal �kj represents either a variable xi, or its negation x̄i, i ∈ {1, . . . , n}. Then
f is satisfiable if there exists a truth assignment x1,. . . , xn such that at least
one literal per clause is true.

Any function of the form (1) can be polynomially transformed to an instance
of the river tarification problem as follows. For each variable xi, i ∈ {1, . . . , n},
we construct a constant-size subnetwork as shown in Figure 2. Each of these
subnetworks has three clients with unit demand, with origin-destination pairs
{sij , tij}, j ∈ {1, 2, 3}. Moreover, each subnetwork has two tariff arcs, ai repre-
senting the truth assignment xi = 1, and āi representing xi = 0, as depicted in
Figure 2.

An upper bound on the cost of routing commodities 1 and 3 is given by fixed
cost arcs (si1, ti1) and (si3, ti3), both with cost 3. For commodity 2, the upper
bound on the cost is given by a fixed cost arc (si2, ti2), with cost 2. The maximal
revenue for each subnetwork is thus given by setting one of the tariffs to 2, and
the other to 3, yielding a revenue of 2 · 2 + 3 = 7. In all other cases, the revenue
is not more than 6.
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Fig. 2. Subnetwork for variable xi, i ∈ {1, . . . , n}

Next, for each clause Ck, k ∈ {1, . . . , m}, we create a clause-commodity k
with origin destination pairs {sk, tk}, with unit demand. Whenever a variable xi

(x̄i, respectively) appears as one of clause Ck’s literals, we connect sk to si1 (si3,
respectively), and ti1 (ti3, respectively) to tk, using arcs of zero cost. In addition,
we introduce a fixed cost arc (sk, tk) with cost 2, defining an upper bound of 2
for the cost of routing clause-commodity k. The so-defined instance of the river
tarification problem has 2n tariff arcs, 3n + m commodities (or clients), and
7m + 11n fixed cost arcs, hence the transformation is indeed polynomial.

Theorem 1. The river tarification problem is strongly NP-hard.

Proof. Consider the polynomial transformation defined previously. It is now
straightforward to show that a satisfying truth assignment for f exists if and
only if the revenue for the river tarification problem is equal to 2m + 7n. ��

The reduction used for the proof of Theorem 1 shows that the river tarification
problem remains NP-hard even for unit demands, a fixed number of tariff values
and when the operator is forced to use tariffs such that he serves (a given subset
of) all clients.

5 The Quality of Uniform Tarification Policies

The uniform tarification problem (UTP) is the same as the general tarification
problem, with the additional restriction that all tariffs are required to be iden-
tical. As shown by van Hoesel et al. [12], the uniform tarification problem can
be solved in polynomial time, even in the general setting where clients may use
paths with several tariff arcs. The algorithm described in van Hoesel et al. [12]
uses the parametric shortest path algorithm of Young et al. [14] and Karp and
Orlin [8] to determine the tariff values (i.e. breakpoints) for which the shortest
path tree changes for any client. Calculating the revenue for the operator at
each breakpoint and maintaining the best solution yields the optimal uniform
tarification policy in polynomial time.
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We next analyze the loss that can be experienced by adopting such a uniform
tarification policy for the river tarification problem. Apart from theoretical in-
terest, the question is motivated by the interest in efficient tarification strategies
in a more general setting with more than one operator. In addition, although
it is quite easy to think of smarter tarification policies, so far all these policies,
except uniform tarification, resisted our attempts of a worst-case analysis.

Therefore, denote by ΠUTP the revenue for an optimal uniform tarification,
and by ΠOPT the revenue for an optimal non-uniform tarification. By definition,
ΠUTP ≤ ΠOPT.

Lemma 1. If an optimal tarification for the river tarification problem with rev-
enue ΠOPT utilizes at most r different tariffs, then for the optimal uniform
tarification, ΠUTP ≥ ΠOPT/r.

The proof of this lemma is indeed trivial. To this end, consider an optimal
non-uniform tarification with tariffs τ1 ≤ · · · ≤ τm, and let Di be the total
demand on an arc ai with tariff τ i, i ∈ {1, . . . , m}. By D =

∑n
k=1 Dk we denote

the total demand served by the operator. Then the revenue created by this
solution is the area under the following ‘staircase’ function f : [0, D] → [0,∞[.

f(x) = τ i for all x with
∑
j<i

Dj ≤ x <
∑
j≤i

Dj , i ∈ {1, . . . , m}. (2)

Proof (of Lemma 1). Consider any of the rectangles inscribed under the graph
of function f(x), with area Ti := τ i ·

∑
j≥i Dj . Then it holds that ΠUTP ≥ Ti

for all i ∈ {1, . . . , m}, since the area of any such rectangle is a lower bound for
the revenue yielded by the optimal uniform tariff ΠUTP. (Notice that this does
not hold for the general tarification problem.) Hence, if only r different tariffs
are utilized, we consider the r (inclusion-)maximal rectangles under function f ,
say Ti1 , . . . , Tir , and get r ·ΠUTP ≥∑r

j=1 Tij ≥ ΠOPT. ��

Since r ≤ m, Lemma 1 yields the following theorem. Tightness of the result
will be shown below, using Example 1.

Theorem 2. Uniform tarification is an m–approximation for the river tarifica-
tion problem.

We next derive an another bound on the quality of uniform tarification poli-
cies, using a geometric argument.

Theorem 3. Uniform tarification is a (1 + lnD)–approximation for the river
tarification problem, where D ≤ ∑n

k=1 dk is the total demand that is served by
the operator in an optimal solution.

Proof. Indeed, we will even prove a slightly stronger result than claimed in The-
orem 3. Consider an optimal non-uniform tarification, and recall the definition of
the corresponding staircase function f in (2), as well as the inscribed rectangles,
with areas Ti = τ i ·

∑
j≥i Dj . Let � be the index of the maximal area rectangle
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among all Ti, with area T�. Let x� :=
∑

j≥� Dj = T�/τ �. Moreover, denote by
τmax the maximal tariff utilized in that optimal solution. We show

ΠUTP ≥ ΠOPT

1 + ln(Dτmax/T�)
. (3)

Theorem 3 then follows, because T� ≥ τmax by definition of T�. To prove (3), we
define the function

g(x) :=
T�

D − x
for x ∈ [0, D) . (4)

We claim that g(x) ≥ f(x) for x ∈ [0, D). To see this, take any x with
∑

j<i Dj ≤
x <

∑
j≤i Dj , then f(x) = τ i by definition. Now

g(x) =
T�

D − x
≥ T�

D −∑j<i Dj
=

T�∑
j≥i Dj

=
T�

Ti/τ i
≥ τ i = f(x) ,

where the first inequality follows by choice of x, and the last follows by choice
of � as the index of the largest rectangle.

Hence, the area under the staircase function, which equals ΠOPT, can be
upper bounded in terms of the area defined by the function g(x), as depicted
in Figure 3. To compute this area, we partition it into three parts, namely the
rectangle T� itself, the area under g(x) on the domain x ∈ [0, D − x�], as well
as the area to the right of g(x) on the domain τ ∈ [τ �, τmax]. The latter is the
integral of the function D − g−1(τ) = T�/τ on the domain [τ �, τmax]. We thus
obtain the following.

xl

Tl

τ
g(x)

τ

d

τmax

l

D

Fig. 3. Illustration for the proof of Theorem 3
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ΠOPT ≤ T� +
∫ D−x�

0

T�

D − x
dx +

∫ τmax

τ �

T�

τ
dτ

= T�[1 + lnD + ln τmax − ln τ � − lnx�]
= T� [1 + ln(Dτmax/T�)] ,

and since T� ≤ ΠUTP, claim (3) follows. ��
Notice that claim (3) confirms the following geometric intuition: The closer

the staircase function f(x) is to the straight line x �→ (τmax/D) · x, the closer
is T� to Dτmax/4, which yields an approximation ratio of (1 + ln 4) ≈ 2.4 for
uniform tarification. Geometric intuition indeed suggests a ratio of roughly 2,
the additional 0.4 being caused be the difference between the functions g(x)
and f(x). In Section 8, we compare the quality of uniform versus non-uniform
tarification, based on instances obtained from France Télécom.

In the case of unit demands of the clients, that is, if dk = 1 for all clients
k = 1, . . . , n, we obtain the following.

Corollary 1. Whenever clients have unit demands, uniform tarification is a
(1 + lnn)–approximation for the river tarification problem.

Finally, let us show tightness of the bounds in Theorems 2 and 3.

Example 1. Given n=m commodities and m tariff arcs. Every commodity is
operating its own subnetwork with one tariff arc, thus the entire network consists
of m disjoint subnetworks and each of them contains one commodity and one
tariff arc. Fix b > 1 and let the demand in subnetwork k be given by dk =
bk−bk−1, k ∈ {1, . . . , m}. This way, the total demand D equals bm−1. Moreover,
the maximal revenue for subnetwork k is limited by a fixed cost arc (sk, tk), with
cost ck = b2m−k. Hence, the maximal tariff τmax equals b2m−1. ��

In the optimal solution, the tariff for each subnetwork k is set to its maximal
value, b2m−k. Each subnetwork therefore contributes a revenue of b2m − b2m−1,
and ΠOPT = m(b2m−b2m−1). The optimal uniform tarification consists in setting
the tariff on all tariff arcs to bm. This way, every unit of demand creates a profit of
bm, yielding a total revenue of b2m−bm. Other (reasonable) uniform tariffs would
be values b2m−k, k ∈ {1, . . . , m− 1}. This yields a total revenue of b2m− b2m−k,
which is less. Therefore, we obtain

ΠUTP/ΠOPT =
b2m − bm

m(b2m − b2m−1)
≤ b2m

m(b2m − b2m−1)
=

1
m
· b

b− 1
.

Now, observe that in the optimal solution m different tariffs are utilized. Lemma 1
(Theorem 2, respectively) suggests that uniform tarification provides an m–
approximation. Example 1 proves that this is best possible, since b can be chosen
arbitrarily large.

Moreover, Theorem 3 suggests that uniform tarification is a (1 + lnD)–
approximation. In Example 1, we have D = (bm − 1) and thus (1 + lnD) =
1 + ln(bm− 1) ≤ 1 + m ln b. Hence, Theorem 3 yields that uniform tarification is
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a O(m)–approximation on this example. The same Example 1 shows that O(m)
is indeed best possible. Summarized, we thus get the following.

Theorem 4. For uniform tarification, the performance bound of Theorem 2 is
best possible, and the performance bound of Theorem 3 is best possible up to a
constant factor.

6 All-Service River Tarification Problem

In this section, we consider the following variation of the river tarification prob-
lem. The operator must set tariffs in order to capture the demand of all clients,
that is, tariffs must be such that no client k is forced to use the arc (sk, tk). We
refer to this problem as the all-service river tarification problem. NP-hardness
of this problem follows by our previous reduction presented in Section 4.

It follows from trivial examples that the maximal revenue for the all-service
problem can be an arbitrary factor away from the maximal revenue without the
all-service constraint. Hence, we have an arbitrarily high ‘cost of regulation’.
In addition, we can show that the maximal revenue for the all-service problem
cannot be approximated well.

Theorem 5. For any ε > 0, the existence of a polynomial time approximation
algorithm for the all-service river tarification problem with with n clients and m
tariff arcs with worst case ratio O(m1−ε) or O(n1/2−ε) implies ZPP = NP.

Proof. The proof uses an approximation preserving reduction from Indepen-
dent Set [5] to the all-service RTP. So assume we are given a graph G = (V, E),
and the problem is to find a maximum cardinality subset V ′ ⊆ V of vertices such
that no two vertices in V ′ are connected by an edge. The transformation works
as follows. For every vertex v ∈ V we introduce a client with origin-destination
pair {sv, tv} and demand dv = |E|, and a corresponding tariff arc av. We connect
the source sv to the tail of the tariff arc av, and the head of av to the destina-
tion tv, using zero cost fixed cost arcs. Moreover, there is a fixed cost arc (sv, tv)
with cost (|V | + 1) for all vertices v ∈ V . For every edge e ∈ E we introduce a
client with origin-destination pair {se, te} and unit demand. The upper bound
on the cost of routing this demand is given by the fixed cost arc (se, te) with
cost 1. For all edges e ∈ E and all vertices v ∈ V with v ∈ e, we furthermore
introduce fixed cost arcs (se, tail(av)) and (head(av), te), with zero cost. This
transformation results in an instance of the all-service RTP with |V | tariff arcs,
and |V | + |E| clients. Figure 4 gives an example of such a transformation for a
graph G = (V, E) with 3 nodes and 2 edges.

We claim that G has an independent set of cardinality at least k if and only
if there exists a tariff policy for the all-service RTP with a total revenue of
|V ||E|(k + 1) + |E|.

First, assume that G has an independent set V ′ of cardinality k. For all
v ∈ V ′, set the tariff on the corresponding tariff arc av to |V |+ 1, and all other
tariffs to 1. By the definition of an independent set, for any edge e = (v, u) ∈ E
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(a) Indep. Set.

a2 a3a1
n+1n+11 1

t1 ta t2 tb t3

s1 sa s2 sb s3

n+1

(b) All-service RTP.

Fig. 4. Reduction of Independent Set to all-service RTP

at least one of the vertices, v or u, is not in V ′. Therefore, the tariff of at least one
of the tariff arcs, av or au is 1. All clients corresponding to an edge e can thus be
served, using one of the tariff arcs av or au. The clients (sv, tv) corresponding to
the vertices v ∈ V are also served, since the upper bound of |V |+1 is not exceeded
with the so-defined tariffs. Hence, all demands are served. The revenue consists
of |E| from all clients corresponding to the edges E of G, |E|(|V |+1)k from the
clients corresponding to the independent set V ′, and |E|(|V |−k) from the clients
corresponding to V \ V ′. That yields a total revenue of |E||V |(k + 1) + |E|.

Conversely, assume that there exists a set of tariffs that captures all demands,
such that the revenue is |E||V |(k + 1) + |E|. We will show that this implies that
the graph G has an independent set of cardinality at least k. Since all demands
are captured at this tarification strategy, for any edge e = (v, u) ∈ E, the
tariff on at least one of the arcs, av or au, is 1. Consider the set of vertices
V ′ := {v ∈ V : tav

> 1}. By definition, no pair of nodes v, u ∈ V ′ is connected
by an edge. Hence, V ′ is an independent set in G. Let k′ := |V ′|. The revenue
is equal to |E|+ |E|(|V | − k′) + |E|(|V |+ 1)k′ = |E||V |(k′ + 1) + |E|, which by
assumption is at least as large as |E||V |(k + 1) + |E|. This implies that k′ ≥ k
and thus that V ′ is an independent set in G of cardinality k′ ≥ k.

Now, let us assume that we have an α-approximation algorithm A for the
all-service RTP, with α ≥ 1. Consider any instance G = (V, E) of Independent
Set, and the all-service RTP resulting from the above reduction. We can assume
that both the optimal solution and the solution produced by A only utilize tariff
values 1 or |V |+1, because any tariff greater than 1 and not equal to |V |+1 can
be turned into |V |+ 1 with a revenue gain. So ΠOPT = |E||V |(k + 1) + |E| for
some k, and ΠA = |E||V |(k′ + 1) + |E| for some k′. The first part of the proof
yields that the maximal independent set of G has size k, and algorithm A can
be used to find an independent set of size at least k′. Moreover,

1
α
≤ |E||V |(k′ + 1) + |E|
|E||V |(k + 1) + |E| =

1 + 1
|V | + k′

1 + 1
|V | + k

≤ 2 + k′

1 + k
,
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hence k′ ≥ (k + 1)/α − 2. In other words, we have an O(α)–approximation
algorithm for the Independent Set problem.

It is now well known from work of H̊astad [6] that the Independent Set
problem cannot have a polynomial time approximation algorithm with worst case
guarantee O(|V |1/2−ε) unless P = NP, and that it cannot have a polynomial time
approximation algorithm with worst case guarantee O(|V |1−ε) unless ZPP = NP.
Since the number of tariff arcs m in our transformation equals |V |, the first claim
of the theorem follows. Since the number of clients n in our transformation equals
|V |+ |E| ∈ O(|V |2), the second claim follows. ��

On the positive side, we can show the following.

Theorem 6. There exists an n-approximation algorithm for the all-service river
tarification problem.

The proof works by enumeration over all m·n possibilities for a maximum
revenue client using a specific arc. Given that arc-client pair, we can find a
corresponding optimal tariff for that arc in polynomial time using binary search,
in each step solving a system of linear inequalities. We skip the details due to
space limitations.

7 Polynomially Solvable Special Cases

Several polynomially solvable special cases of the (general) tarification problem
are discussed by Labbé et al. [9] and van Hoesel et al. [12]. Clearly, these results
hold for the problem considered in this paper, too.

In addition, the river tarification problem is also polynomially solvable if the
number of clients n is bounded from above by a constant. In that case, the
number of assignments of clients to tariff arcs is bounded by mn which is a
polynomial for fixed n. Consider therefore the following formulation, where we
use notation as given next. The path taken by each client in the network is
denoted by p∗

k ∈ Pk, and Pk represents the set of all possible paths taken by a
client k ∈ K. The revenue associated with a path p ∈ Pk induced by a client k
with demand dk is defined by πp(τ , dk) = dk · τa, where a is the (unique) tariff
arc on path p. The fixed cost of a path p is given by cp(dk) = dk

∑
a∈F∩p ca.

Then lp(τ , dk) := cp(dk) + πp(τ , dk) is the total cost of the path p ∈ Pk for a
client k.

max
τ

∑
k∈K

πp∗
k
(τ , dk)

s.t. lp(τ , dk) ≥ lp∗
k
(τ , dk) ∀k ∈ K,∀p ∈ Pk

τa ≥ 0 ∀a ∈ T

(5)

Since for each client, there are at most m + 1 paths in the network, |Pk| is
bounded by m + 1. Hence, the number of constraints is polynomial in the input
data. Therefore, if we solve mn instances of (5), we can retrieve the optimal
solution in polynomial time.
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8 Numerical Results

As stated previously, whenever the function that describes the total revenue in an
optimal non-uniform solution, i.e. the staircase function defined in (2), is close
to a straight line, geometric intuition suggests a worst-case ratio for uniform
tarification of approximately 2. The worst case Example 1 crucially hinges on a
(staircase) function that approximates a hyperbola. Thus, it can be conjectured
that the empirical performance of uniform tarification policies outperforms the
theoretical bounds we have found. This is indeed confirmed in the following
numerical experiments, displayed in Table 1. The study is based on instances
obtained from France Télécom.

Table 1. Quality of Uniform Tarification on France Télécom instances

Instance |N | |A| m n ΠOPT ΠUTP %

RTN1 29 94 7 15 841 624 74%
RTN2 29 98 6 21 4099 3496 85%
RTN3 59 206 10 13 1118 880 79%
RTN4 59 204 10 20 2217 1512 68%
RTN5 49 120 9 21 74948 55968 74%
RTN6 33 116 15 12 28166 20328 72%

These instances represent telecommunication networks for the international
interconnections market, as described in Section 2. We compare the optimal so-
lutions for uniform tariffs (ΠUTP ) and non-uniform tariffs (ΠOPT ). The optimal
non-uniform solution is calculated using the model and mixed integer program-
ming formulation described in Bouhtou et al. [1]. The value of ΠUTP is calculated
using the same formulation, requiring that all tariffs be equal. As such, we do
not compare the actual computation times, but are just interested in effective-
ness of the optimal uniform tarification policies. Table 1 gives a brief description
of each network, stating the number of nodes, arcs, tariff arcs and clients. The
optimal non-uniform and uniform solution values are displayed in the columns
ΠOPT and ΠUTP . The final column is the approximation ratio.
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Abstract. Suppose there are a set of suppliers i and a set of consumers
j with demands bj , and the amount of products that can be shipped
from i to j is at most cij . The amount of products that a supplier i can
produce is an integer multiple of its capacity κi, and every production of
κi products incurs the cost of wi. The capacitated supply-demand (CSD)
problem is to minimize the production cost of

∑
i wixi such that all

the demands (or the total demand requirement specified separately) at
consumers are satisfied by shipping products from the suppliers to them.

To capture the core structural properties of CSD in a general frame-
work, we introduce the submodular integer cover (SIC) problem, which
extends the submodular set cover (SSC) problem by generalizing sub-
modular constraints on subsets to those on integer vectors. Whereas it
can be shown that CSD is approximable within a factor of O(log(maxi κi))
by extending the greedy approach for SSC to CSD, we first generalize the
primal-dual approach for SSC to SIC and evaluate its performance. One
of the approximation ratios obtained for CSD from such an approach is
the maximum number of suppliers that can ship to a single consumer;
therefore, the approximability of CSD can be ensured to depend only
on the network (incidence) structure and not on any numerical values of
input capacities κi, bj , cij .

The CSD problem also serves as a unifying framework for various
types of covering problems, and any approximation bound for CSD holds
for set cover generalized simultaneously into various directions. It will be
seen, nevertheless, that our bound matches (or nearly matches) the best
result for each generalization individually. Meanwhile, this bound being
nearly tight for standard set cover, any further improvement, even if
possible, is doomed to be a marginal one.

1 Introduction

1.1 Capacitated Supply-Demand Problem

Suppose there are a set A of factories, that all produce the same product, and
a set B of customers that use the product. Each factory i ∈ A has capability
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of producing products in the units of κi tons, incurring the cost of wi dollars
per unit. Customer j ∈ B requests bj tons of the product every month. ¿From
factory i to customer j at most cij tons of the product can be transported every
month. Moreover, the total demand btotal, with 0 ≤ btotal ≤

∑
j∈B bj , specifies,

out of the total requested amount
∑

j∈B bj , what amount of products need to be
supplied in total. A monthly production plan specifies the number of units to be
produced a month at each factory. The problem is: what is the most economical
monthly production plan to fulfill at least btotal tons of all the needs requested
by the customers ? We call this problem the capacitated supply-demand (CSD)
problem.

Using a supply-demand model network, this problem can be defined equiv-
alently as follows. Let N = (V, E) be a network, where V = A ∪ B ∪ {s, t, t′},
with source s, subsink t, sink t′, a set A of supply nodes, and a set B of demand
nodes. Each supply node i ∈ A has an incoming arc from source s, each demand
node has an outgoing arc to subsink t, one arc goes from t to sink t′, and all the
other arcs go from A to B (thus, E = ({s}×A)∪E′ ∪ (B×{t})∪{(t, t′)} where
E′ ⊆ (A× B)). All the arcs other than those in {s} × A are a priori associated
with integral capacities; each capacity bj on arc (j, t) specifies the “demand”
requested by node j ∈ B, cij on arc (i, j) ∈ A× B limits the amount of supply
that can be shipped from i ∈ A to j ∈ B, and btotal on (t, t′) is the total amount
of demands to be supplied. The capacities on the remaining arcs (s, i) ∈ {s}×A
are not given initially; rather, they need to be “purchased” as follows. For each
i ∈ A the unit capacity of κi is available for the unit cost of wi, and it costs
wixi to install the capacity of ai = κixi on (s, i), where a nonnegative integer xi

specifies the number of unit capacities to be used on (s, i). With all the capacities
fully specified, the network is denoted by N = (A∪B∪{s, t, t′}, E, a, b, c, btotal),
where ai = κixi for each i ∈ A. The problem is then to install capacities a ∈ ZA

+
of minimum total cost on arcs in {s} × A by purchasing the available unit ca-
pacities κ, so that the total demand of btotal can be shipped in N , or in other
words, the max flow value reaches btotal in N .

It should be clear by now that, denoting by fij the amount of a flow going
from i ∈ A to j ∈ B in N , CSD can be succinctly formulated by the following
integer program:

min
∑

i∈A wixi

subject to:
∑

j∈B fij ≤ κixi i ∈ A∑
i∈A fij ≤ bj j ∈ B∑

j∈B

∑
i∈A fij ≥ btotal

xi ∈ Z+ i ∈ A
0 ≤ fij ≤ cij i ∈ A, j ∈ B

where w ∈ QA
+, C = [cij ] ∈ ZA×B

+ , κ ∈ ZA
+, b ∈ ZB

+. To capture the core struc-
tural properties of CSD in a general framework, however, we next introduce the
submodular integer cover problem, and will later derive an IP formulation for it.
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1.2 Submodular Integer Cover

Definition 1. A function g : Rn → R is said to be

1. nondecreasing if x ≤ y implies g(x) ≤ g(y), and
2. submodular if g(x) + g(y) ≥ g(x ∨ y) + g(x ∧ y) for all x, y ∈ Rn,

where x ∨ y and x ∧ y are, respectively, the vectors of componentwise maxima
and minima of x and y: (x ∨ y)i = max{xi, yi}, (x ∧ y)i = min{xi, yi}.

Let G = (V, E) be a network with a nonnegative capacity c(a) for each arc
a ∈ E. Two arcs are said to be parallel if every simple cycle containing both
of them orients them in the opposite direction, and a set of arcs is parallel if
it consists of pairwise parallel arcs. Let P be a parallel arc set and denote the
vector of capacities on arcs in P by cP .

Proposition 2 (Gale-Politof [12]) The maximum flow value F of G as a
function in cP is submodular.

Recall the network N constructed in Sect. 1.1. The arc set {s} × A in N is
then parallel, and hence, the max flow value F of N is submodular in c{s}×A.
Define a function ρ : ZA

+ → R+ s.t.

ρ(x) = (max flow value of N with ai = κixi,∀i)

for a CSD instance of (N , κ, w). Then, x ∈ ZA
+ is a feasible CSD solution for

(N , κ, w) iff ρ(x) = btotal = ρ( �∞). Using ρ, CSD can be thus formulated by
min{∑i∈A wixi | ρ(x) = ρ( �∞)}.

One can easily observe that ρ is nondecreasing as well as submodular by
Proposition 2 since ρ(x) = F ((· · · , κixi, · · ·)), and CSD thus fits into the follow-
ing general framework:

Definition 3. Given a finite set A, a weight function w : A → R, and a
nondecreasing submodular function g : ZA

+ → R, the problem of computing
min{∑i∈A wixi | g(x) = g( �∞)} is called the Submodular Integer Cover (SIC)
problem. Any x ∈ ZA

+ satisfying g(x) = g( �∞) is a solution for the instance
(A, w, g) of SIC.

NOTE: In case when g is a set function (i.e., a function defined on 0-1 vectors),
the problem is known as submodular set cover [29].

1.3 Related Problems and Previous Work

When all the unit capacities κi equal to one, CSD can be seen reducible to the
minimum-cost flow problem. Another basic problem arising as a special case is
the set cover (SC) or vertex cover (VC) problems, classic NP-hard problems of
which polynomial time approximability has been intensively studied in the liter-
ature. In fact CSD serves as a unifying framework for various types of covering
problems as will be seen below. In SC, given a family F of subsets of some base
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Table 1. Covering Problems in the framework of CSD

κi cij bj btotal

Set Cover |δ+(i)| 1 1 |B| =
∑

j∈B bj

Multicover |δ+(i)| 1
∑

j∈B bj

Capacitated Set Cover 1 1 |B| =
∑

j∈B bj

(with Demands) 1
∑

j∈B bj

Partial Set Cover |δ+(i)| 1 1

set U with associated nonnegative costs, it is required to compute a minimum
cost subfamily C such that every element of U is “covered by” (i.e., contained
in) some subset in C. Defined analogously on graphs G, VC is to compute a
minimum cost vertex subset C in G such that every edge of G is incident to
some vertex in C. In the multicover (MC) problem, each element j of U in an
SC instance is associated with “demand” bj , and each j now needs to be covered
bj times (by different subsets). One of the most general problems previously con-
sidered along this line is the multiset multicover (MMC) problem, that can be
defined by the following integer program: min{wT x | xT C ≥ bT , x ≤ u, x ∈ Zn

+}.
It also has a version without explicit upper bounds u on x. In capacitated SC ,
each subset S ∈ F in an SC instance is associated with capacity κS and cost wS .
A single copy of S can cover only κS elements among those contained in S, and
by paying wS per copy, more copies of S can be used to cover more elements of
S. In case when each element e is associated with demand be in capacitated SC,
e has to be covered be times. In yet another direction of generalizations of SC,
it is required to cover only btotal elements or more (instead of all) in partial SC
when an additional integer btotal is given to SC.

For a node v ∈ V in network N , let δ+(v) (δ−(v), resp.) denote the set
of arcs leaving v (entering v, resp.). For a finite set J , J ′ ⊆ J , and a vector
z ∈ ZJ

+ in general, z(J ′) will be used as an abbreviation for
∑

j∈J′ zj . Those
covering problems listed above can be realized in CSD by fixing some of problem
parameters appropriately (see Table 1). In MMC min{wT x | xT C ≥ bT , x ≤
u, x ∈ Zn

+}, explicit upper bounds x ≤ u are called multiplicity constraints, and
if it is non-existent, a trivial upper bound on xi is maxj�bj/cij
. When cast in
CSD, each i ∈ A is replaced (not explicitly) by ui copies, i1, . . . , iui

, each cilj is
set to min{cij , max{0, bj −

∑l−1
k=1 cikj}}, and the unit capacity κil

to c(δ+(il)).
(We remark that possibly non-polynomial expansion of problem instances in this
reduction causes no trouble in our algorithm.)

It was (or can be) shown in all the cases that a greedy heuristic yields a factor
H(maxi∈A κi) = O(log(maxi∈A κi)) approximation, where H(k) =

∑k
i=1(1/i) is

the kth harmonic number; see [22, 24, 6] for SC, [8] for MMC, [26] for partial
SC, and [5] for capacitated MMC. Other approximation bounds known for these
problems include:

– maxj∈B |δ−(j)| [20, 2] and maxj∈B |δ−(j)| − (1− o(1)) (maxj∈B |δ−(j)|−1) ln ln n
ln n

[18] for SC.
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– maxj∈B |δ−(j)| for MC [17], and maxj∈B |δ−(j)| − bmin + 1 for unweighted
MC [25], where bmin = minj∈B bj .

– O(log |B|) [23] and maxj∈B |δ−(j)| = “max # of nonzero entries in a row of
C” [4] for MMC.

– maxj∈B |δ−(j)| for capacitated SC, and 3 for capacitated VC with “unsplit-
table” demands [16].

– maxj∈B |δ−(j)| for partial SC [1, 11, 13], 2 for partial VC [10, 3, 21], and
2 − Θ( ln ln |δ+(i)|

ln |δ+(i)| ) for unweighted partial VC on graphs of maximum degree
|δ+(i)| [19].

On the other hand, the following lower bounds are known for approximability of
SC: (1− ε) ln |B| for any ε > 0 [9] (assuming NP �⊂ DTIME

(
nO(log log n)

)
), and

|δ−(j)| − 1− ε [7].
CSD can be seen also related to the capacitated facility location problem, the

network loading problem, and the single-sink buy-at-bulk problem among others.
In fact, if shipping a unit product from i ∈ A to j ∈ B incurs a certain cost
and the objective is to minimize total cost of production and shipping, CSD cor-
responds to the capacitated facility location problem having “flow constraints”
in it. To the best of our knowledge, however, no covering-type problem with
covering capacities and flow constraints explicitly given as in CSD, has been
previously considered.

1.4 Summary of Results

In designing approximation algorithms for CSD or SIC, it is natural to con-
sider extending known approximation algorithms for SSC. There are two such
algorithms, one greedy [29] and the other primal-dual [11]. It is rather straight-
forward to extend the former to CSD resulting in the approximation ratio of
H(maxi∈A κi) = O(log(maxi∈A κi)). It will be seen, on the other hand, that
the primal-dual approach for SIC yields an approximation algorithm for CSD
running in time O(nM(n, m)), where M(n, m) denotes time complexity of com-
puting an s− t max flow in a network with n nodes and m arcs. It requires much
more intricate analysis based on reasoning on the relationship between flow val-
ues and capacity settings, however, to estimate its performance ratio, and to
describe it, let δD−(j) = δ−(j)−D, bD

j = bj − c(D), and cD
ij = min{cij , b

D
j } for

any D ⊂ δ−(j). It will be shown that the approximation factor guaranteed is

max

{
2, max

j∈B, D⊂δ−(j)

{
cD(δD−(j))

bD
j

}}
(1)

in its general form. Various consequences can be drawn immediately from (1),
e.g.,

1. By assuming w.l.o.g. that cij ≤ bj ,∀i, j, (1) reduces to maxj∈B |δ−(j)|;
hence, the approximability of CSD can be ensured to dependent only on
the network (incidence) structure of a given instance, and not on any nu-
merical values of input capacities κi, bj , cij .
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The primal-dual algorithm is thus more effective than greedy when the number
of suppliers that can ship products to each consumer is relatively small (such as
in “vertex cover type” problems).

To measure the effectiveness of these bounds, it is instructive to compare
them with existing results for the covering problems previously considered. The
bound in 1. matches the best ones for capacitated SC [16], partial SC [1, 11, 13],
weighted MC [17], and MMC [4] (see 3. below), respectively. Meanwhile, this
bound nearly matching the best one for SC [18] as well, any further improvement
would be necessarily a marginal one, even if possible, due to the strong lower
bound of maxj∈B |δ−(j)|−1−ε for standard SC [7]. Further consequences implied
by (1) (or the bound in 1.) include:

2. Capacitated VC with splittable demands is approximable within a factor of
2, in contrast with the 3-approximation of [16] for unsplittable demands.

3. In MMC, with or without multiplicity constraints, cD
ij ’s (= min{cilj , b

D
j }’s)

in (1) are evaluated s.t., when summed up over all il’s for some i, they never
exceed bD

j (more details will be given in the full version). And then, the
obtained bound (assuming maxj |δ−(j)| ≥ 2) is at most

max

{
2, max

j,D

{
|δD−(j)|bD

j

bD
j

}}
= max{2, max

j,D
|δ−(j)−D|} = max

j∈B
|δ−(j)|,

which coincides with the approximation factor, “max # of nonzero entries
in a row of C”, given in [4].

4. Depending on actual values of cij and bj , the estimation could be further
lowered. If cij = cj , ∀i, j, let bj = sjcj + tj s.t. 0 ≤ sj , 0 < tj ≤ cj .
Then, the value of (1) can be seen reducible to maxj∈B {max {|δ−(j)| − sj ,

(|δ−(j)| − sj + 1) cj

cj+tj

}}
. Thus, when cij = 1,∀i, j, for instance, CSD is

approximable within a factor of maxj∈B (|δ−(j)| − bj) + 1. This CSD bound
with such restrictions on cij ’s alone already improves e.g. maxj∈B |δ−(j)| −
bmin + 1 for unweighted MC observed in [25].

In the multi-capacitated version of CSD, multiple types of unit capacities are
available at different prices for each i ∈ A. Such a generalization enables CSD
to reflect e.g. an “economy of scale” (or “volume discount”). Our algorithm
still works with this version providing the same approximation guarantee of (1)
(details given in the full version).

2 Approximating Submodular Integer Cover

It is rather straightforward to obtain the greedy bound of H(maxi∈A κi) for CSD
by extending the greedy algorithm for SSC and its performance analysis given
by Wolsey [29]. Therefore, we focus on the primal-dual approach for SIC and
its application to CSD for the rest of the paper.
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2.1 Preliminaries and IP Formulation

Definition 4. Let ek denote the kth unit vector in ZA
+ s.t. ek

i =
{

1 if i = k
0 otherwise

for i ∈ A. For nondecreasing g we also assume it is bounded, i.e., there exists
u ∈ R s.t. g(x) ≤ u, ∀x ∈ ZA

+. Then, there must exist an integer ui for each i ∈ A
s.t., for any x with xi = ui and x′

i ≥ ui, g(x′) = g(x) if x′
j = xj for j ∈ A−{i}.

Let ui be minimal such an integer for each i ∈ A, and let χS denote the vector

in ZA
+ s.t. χS

i =
{

ui if i ∈ S
0 otherwise for S ⊆ A. Thus, g(χA) = supx∈ZA

+
g(x).

Let Li be a lattice for i = 1, · · · , n, and L be a sublattice of
∏n

i=1 Li. It was
shown by Topkis that a submodular function on L has antitone (i.e., nonincreas-
ing) differences on L:

Proposition 5 (Topkis [27]) Let (x1, · · · , xn) be an element of L. If g is a
real-valued submodular function on L, for all j �= k with each xi fixed for i �= j
and i �= k, g(xj , z) − g(xj , xk) is nonincreasing in xj on Lz ∩ Lxk for each
xk < z in Lk, where Lt = {x | (x1, · · · , xj = x, · · · , xk = t, · · · , xn) ∈ L}.

Lemma 6. If g is submodular and nondecreasing,

g(x) ≤ g(χS) +
∑

j∈A−S

(g(χS + ej)− g(χS))xj

for x ∈ ZA
+ and S ⊆ A.

Proof. Let A− S = {j1, . . . , jr}. Then,

g(x + χS)− g(χS) =
r∑

t=1

xjt∑
l=1

{g(χS +
t−1∑
k=1

xjk
ejk + lejt)

−g(χS +
t−1∑
k=1

xjk
ejk + (l − 1)ejt)}

≤
r∑

t=1

xjt∑
l=1

{g(χS + ejt)− g(χS)}

=
r∑

t=1

{g(χS + ejt)− g(χS)}xjt

where the inequality holds due to Proposition 5. Since g is also nondecreasing,

g(x) ≤ g(x + χS) = g(χS) + (g(x + χS)− g(χS))

≤ g(χS) +
r∑

t=1

{g(χS + ejt)− g(χS)}xjt

��
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Define function ΔS : A−S → Z+ for S ⊆ A s.t. ΔS(i) = g(χS + ei)− g(χS).

Theorem 7. If x is a solution for an SIC instance (A, w, g), it is feasible in the
following integer program:

min
∑

i∈A wixi

(IP) subject to: x ∈ ZA
+∑

i∈A−S ΔS(i)xi ≥ g(χA)− g(χS), S ⊆ A

Consequently, the optimum for (A, w, g) is lower bounded by that of the corre-
sponding (IP).

Proof. If x is a solution for (A, w, g), g(x) = g( �∞) = g(χA), and by Lemma 6,

g(χA) = g(x) ≤ g(χS) +
∑

i∈A−S

(g(χS + ei)− g(χS))xi = g(χS) +
∑

i∈A−S

ΔS(i)xi

for any S ⊆ A; hence, x satisfies all the constraints of (IP). ��

2.2 Primal-Dual Schema

To design a primal-dual based approximation algorithm for SIC, we begin with
relaxing the integral constraints x ∈ ZA

+ of (IP) to the linear constraints x ≥ 0.
By taking the dual of the resulting LP relaxation (LP) of (IP), we next obtain

max
∑

S⊆A

(
g(χA)− g(χS)

)
ys

(D) subject to:
∑

S:i∈A−S ΔS(i)yS ≤ wi, i ∈ A
yS ≥ 0, S ⊆ A

The primal-dual schema for “set cover type” problems (i.e., “covering by a
0-1 vector” type) is by now a well established algorithmic technique (see surveys
given in e.g. [14, 28]); we here extend it to the primal-dual pair of (IP) and (D)
in designing an algorithm called PD. It consists of the following two phases; the
phase in which a maximal dual solution y is constructed in a greedy fashion, and
an integral primal solution x is correspondingly chosen s.t. it satisfies the primal
complementary slackness conditions with y, followed by the phase called reverse
delete in which x is ensured to satisfy minimality conditions in a certain order.

More specifically, starting with F = ∅ and the dual solution y = 0, a variable
yF in (D) is iteratively increased maximally without violating dual feasibility in
the first phase, so that the dual constraint for i becomes newly binding for some
i in A−F ; that is,

∑
S:i∈A−S ΔS(i)yS = wi. This amounts to finding i in A−F

(say, i′) at the lth iteration minimizing

wi −
∑

S:i �∈S,S �=F ΔS(i)yS

ΔF (i)
=

wi −
∑

1≤t≤l−1 ΔFt
(i)yFt

ΔF (i)

and setting yF to
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Initialize: x = 0, y = 0, F = ∅, STACK = ∅, w̄i ← wi (∀i ∈ A).
While x is not an SIC solution for (A, w, g) (i.e., g(x) < g(χA)) do

Let yF ← mini∈A−F {w̄i/ΔF (i)} and i′ ← argmini∈A−F {w̄i/ΔF (i)}.
Add i′ into F , push it onto STACK, and set xi′ ← ui′ .
For each i ∈ A − F do

Reset w̄i ← w̄i − ΔF (i)yF

(
= w̄i − ΔF (i)

ΔF (i′) w̄i′
)
.

While STACK �= ∅ do
Let i′ ← pop(STACK).
Set xi′ ← min{xi′ | g(x) = g(χA)}.

Output x.

Fig. 1. Algorithm PD for SIC

min
i∈A−F

{
wi −

∑
S:i �∈S,S �=F ΔS(i)yS

ΔF (i)

}
=

wi′ −∑S:i′ �∈S,S �=F ΔS(i′)yS

ΔF (i′)

=
wi′ −∑1≤t≤l−1 ΔFt(i

′)yFt

ΔF (i′)

where F0 = ∅ ⊆ F1 ⊆ . . . ⊆ FT denote (intermediate) F ’s constructed, in this
order, by each iteration of the first phase (So, yS > 0 iff S is one of these F ’s).
This i′ (or any other binding i’s) is then added to F so that F remains as the
set of all i’s whose corresponding constraints are binding. At the same time it is
kept track of in what order dual constraints become binding during this process
(or, in what order i’s enter F ) in the first phase. Let x represent χF . Then, x
eventually becomes an SIC solution as F may grow up to A if necessary.

In the second phase an actual SIC solution x is constructed based on F
and the ordering of i’s in F computed as above. Starting with x = χF , each
i ∈ F is processed, one by one, in reversal of the order in which they were added
to F during the first phase, and xi is set to the minimal value needed for x
to remain as a solution for (A, w, g). The SIC solution x constructed in this
manner satisfies a certain minimality property: For all t = 1, . . . , T , the values
of xi’s with i ∈ F − Ft are the ones “minimally” required, in addition to χFt ,
to increase its g-value from g(χFt) up to the required g(χA); in other words, the
value of g(x + χFt) drops below that of g(χA) whenever any xi with i ∈ F − Ft

is decremented. The pseudo-code description of this algorithm is given in Fig. 1.

2.3 Analysis

In the algorithm PD any element i ∈ A enters F (in the first phase) iff the cor-
responding dual constraint becomes binding; that is, wi =

∑
S:i∈A−S ΔS(i)yS .

Therefore, the weight of computed x is

∑
i∈F

wixi =
∑
i∈F

( ∑
S:i∈A−S

ΔS(i)yS

)
xi =

∑
S⊆A

( ∑
i∈F−S

ΔS(i)xi

)
yS .
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When the RHS in this equation is compared with the objective function of (D),
of which value gives a lower bound for the optimal weight, it can be seen that
the ratio of the weight of x to the optimal weight is bounded above by

max
S⊆A,yS>0

∑
i∈F−S ΔS(i)xi

g(χA)− g(χS)
= max

1≤t≤T

∑
i∈F−Ft

ΔFt(i)xi

g(χA)− g(χFt)
. (2)

Recall now how an actual SIC solution x is constructed in the second phase.

Definition 8. We call a solution x for (A, w, g) minimal w.r.t. S ⊆ A if x +
χA−S becomes a non-solution when any xi > 0 with i ∈ S is decremented.

It is ensured that x be minimal w.r.t. A− Ft for each t (1 ≤ t ≤ T ). Therefore,
x can be restricted to such solutions for (A, w, g) in estimating the bound in (2),
and we have the following general approximation bound for SIC:

Theorem 9. When applied to an SIC instance (A, w, g), the algorithm PD com-
putes a solution such that the ratio of its weight to the optimal weight is bounded
by

max
{∑

i∈A−S ΔS(i)xi

g(χA)− g(χS)

}
, (3)

where max is taken over any S ⊆ A and such a solution x for (A, w, g) that is
minimal w.r.t. A− S.

3 Application to CSD Problem

To model CSD in the framework of SIC, let ui = �c(δ+(i))/κi
, ∀i ∈ A, and de-
fine a function ρ : ZA

+ → Z+ s.t. ρ(x) = (max flow value of N with ai = xiκi,∀i)
for a CSD instance of (N , κ, w). As we will need to consider N specified with
flow capacities of our own choice, such a network with new capacities a′, b′, c′

will be denoted by N (a = a′, b = b′, c = c′). Let NS denote the network N in
which capacity ai on (s, i) = ∞ if i ∈ S and ai = 0 otherwise, for S ⊆ A (i.e.,
NS = N (ai = ∞ for i ∈ S, ai = 0 for i ∈ A− S)). In estimating the bound of
(3) in the context of CSD, the next lemma is useful:

Lemma 10. Let f be any max flow in the network NS for S ⊆ A. When f
is augmented up to a max flow in NA, no augmenting path passes through any
i ∈ S.

Proof. Consider the residual network N r
A with respect to NA and f . Assuming

that f is not yet a max flow in NA, observe that f saturates either arc (i, j)
or (j, t) in NS for each i ∈ S and all j with (i, j) ∈ δ+(i). Or, in other words,
for each j reachable from some i ∈ S, either arc (j, t) is saturated, or all (i, j)’s
going from S to j are saturated. Therefore, N r

A has no s-t dipath in it passing
through any i ∈ S, and it remains so even if f is augmented to a larger flow
in NA; even after augmentations, the original f is nowhere decremented, and
saturated arcs continue to block any augmentation through nodes in S, due to
the network structure (A ∪B ∪ {s, t, t′}, E) of N . ��
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The next is a key lemma of this paper, yet due to the space limitation, its
proof is omitted here (will be given in the full version):

Lemma 11. Let x ∈ ZĀ
+ be a minimal CSD solution for (N̄ = (Ā ∪ B̄ ∪

{s, t, t′}, Ē, b̄, c, b̄total), κ, w). Then,∑
i∈Ā κixi

b̄total
≤ max

{
2, max

j∈B̄

c(δ−(j))
b̄j

}
. (4)

Consider the network N ′
S obtained from NS and a max flow f in it by re-

moving all the nodes in S along with incident arcs, and adjusting the capacities
on (j, t) to bj − f(j, t). It follows from Lemma 10 that the values of ΔS(i) and
ρ(χA) − ρ(χS) in (3) coincide with the max flow value in N ′

S(ai = κi) and
btotal − |f |, respectively, where the former is always bounded by κi. Recall that,
x being minimal w.r.t. A− S, the vector (xi)i∈A−S specifies minimal capacities
on arcs (s, i), i ∈ A − S, required to increase the max flow value |f | of NS to
btotal; again from Lemma 10, it means that (xi)i∈A−S is by itself a minimal CSD
solution for N ′

S with btotal adjusted to the necessary increments of btotal − |f |.
Therefore, the value of (3) can be evaluated by taking the maximal value of (4)
over all possible N ′

S (subject to yS > 0) used in place of N̄ of Lemma 11. It
follows from these observations and Theorem 9 that

Theorem 12. For any D ⊂ δ−(j), let δD−(j) = δ−(j)−D, bD
j = bj−c(D), and

cD
ij = min{cij , b

D
j }. The algorithm PD computes a CSD solution to an instance

(N = (A∪B∪{s, t, t′}, E, b, c, btotal), κ, w), s.t. the ratio of its cost to the optimal
cost is bounded above by

max

{
2, max

j∈B, D⊂δ−(j)

{
cD(δD−(j))

bD
j

}}
. (5)

By assuming w.l.o.g. that cij ≤ bj ,∀i, j, it can be shown that (5) reduces to
max {2, maxj∈B |δ−(j)|}. If maxj∈B |δ−(j)| < 2, however, |δ−(j)| = 1, ∀j ∈ B,
and this occurs only in a trivial case.

Corollary 13. The algorithm PD computes a CSD solution to an instance (N =
(A∪B ∪{s, t, t′}, E, b, c, btotal), κ, w), s.t. the ratio of its cost to the optimal cost
is bounded above by maxj∈B{|δ−(j)|}.

Running Time. Each iteration in the first phase (first while-loop) can be car-
ried out in time O(m), whereas time complexity of the second phase (second
while-loop) is dominated by that of computing a max flow in each iteration.
The running time of PD, when applied to CSD, is thus O(nM(n, m)), and
M(n, m) = O(nm log(n2/m)), for instance, when the Goldberg-Tarjan’s algo-
rithm is used [15].
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Abstract. We consider a non-preemptive, stochastic parallel machine
scheduling model with the goal to minimize the weighted completion
times of jobs. In contrast to the classical stochastic model where jobs
with their processing time distributions are known beforehand, we as-
sume that jobs appear one by one, and every job must be assigned
to a machine online. We propose a simple online scheduling policy for
that model, and prove a performance guarantee that matches the cur-
rently best known performance guarantee for stochastic parallel machine
scheduling. For the more general model with job release dates we de-
rive an analogous result, and for NBUE distributed processing times we
even improve upon the previously best known performance guarantee for
stochastic parallel machine scheduling. Moreover, we derive some lower
bounds on approximation.

1 Introduction

Non-preemptive parallel machine scheduling to minimize the weighted comple-
tion times of jobs, P| |∑wjCj in the three-field notation of Graham et al. [6],
is one of the classical problems in scheduling theory. This problem plays a role
whenever many jobs must be processed on a limited number of machines, with
typical applications, e.g., in parallel computing [2] or compiler optimization [3].
The main characteristic of the model of stochastic scheduling is the fact that
the processing times of jobs are subject to fluctuations, and become known only
upon completion of the jobs. Their respective distributions are assumed to be
given beforehand. This usually requires the notion of scheduling policies instead
of simple schedules.
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Stochastic scheduling. Stochastic machine scheduling models have been addressed
mainly since the 1980s [4]. Let us briefly recall the concept of a scheduling pol-
icy as introduced by Möhring et al. [10]. Roughly spoken, at any time t, such a
policy specifies which action to perform, in particular which jobs to start at t. In
order to decide, it may utilize the complete information contained in the partial
schedule up to time t. However, it must not utilize any information about the
future. An optimal scheduling policy is one that minimizes the objective function
value in expectation. Notice that, in general, a scheduling policy need not yield
a fixed assignment of jobs to machines.

With the exception of the papers by Weiss [18, 19], the first approxima-
tion algorithms for stochastic machine scheduling have been derived only re-
cently [11, 13, 14, 16]. In the papers [11, 14], the expected performance of a lin-
ear programming based list scheduling policy is compared against the expected
performance of an optimal scheduling policy. The results are constant-factor
approximations for problems with or without release dates [11], and also with
precedence constraints [14]. The approach is based upon the solution of linear
programming relaxations, and for the models with release dates or precedence
constraints, their solutions are used in order to define corresponding list schedul-
ing policies. Recently, another type of analysis has been pursued by Steger et
al. in the papers [13, 16], where the expected ratio of the performance of the
(W)SEPT rule1 over the optimum solution is analyzed. This approach may in-
deed have advantages over the previous approach, namely in terms of averaging
over different realizations of processing times, and we refer to [13, 16] for a discus-
sion. One of the main differences, however, is the fact that it uses a comparison
against the off-line optimum, whereas the approach in [11, 14] compares against
the on-line optimum. Nevertheless, restricted to models without release dates or
precedence constraints, constant-factor approximation results for the expected
ratio have been obtained for the (W)SEPT rule on parallel machines [13, 16].

Stochastic online scheduling. In this paper, we follow the approach taken by
Möhring et al. [11]. In other words, we compare the expected outcome of a certain
scheduling policy against the expected outcome of an optimal scheduling policy.
In contrast to the previously mentioned work on stochastic scheduling, however,
we consider a model where jobs have to be assigned to machines online. More
precisely, jobs j are presented to the scheduler one by one, with their weights wj

and expected processing times E [P j ], and without knowledge about jobs that
might appear in the future, or their number, they must be assigned to a ma-
chine. This assignment cannot be revised later. Once all jobs have been assigned
this way, there is freedom concerning the scheduling of jobs on every single ma-
chine; of course, still within the restrictions that jobs must not be preempted, and

1 In the WSEPT rule, jobs are scheduled greedily in the order of non-increasing ratios
wj/E [P j ], where wj is the weight of job j, P j its processing time distribution,
and E [P j ] is its expectation. For unit weights, this equals SEPT; shortest expected
processing time first.
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that their actual processing times become known only upon completion. For
convenience, let us denote this model Sos, for stochastic online scheduling.

Discussion of the model. As a matter of fact, the solution of LP relaxations is
crucial for the work of Möhring et al. [11] or Skutella and Uetz [14]. For models
with release dates or precedence constraints, optimal LP solutions are not only
required for the purpose of analysis, but also to define the corresponding list
scheduling policies. In order to set up these LP relaxations, it is required to know
beforehand the set of jobs, their expected processing times E [P j ], as well as a
uniform upper bound Δ on the squared coefficient of variation of all processing
times distributions

CV [P j ]
2 = Var [P j ]/E [P j ]

2 ≤ Δ for all jobs j .

One critique of this approach is the fact that in practical applications, parts of
this data might not be available. Even worse, in an online setting there is no
knowledge about jobs that might appear in the future. In that case, algorithms
that first require the solution of sophisticated LP relaxations might be useless.

The Sos model as proposed in this paper can be seen as a first step in the
direction of simpler, combinatorial algorithms for models with stochastic pro-
cessing times. It is a two-phase model, where the first phase consists of an online
assignment of jobs to machines. In this phase, whenever a job j is presented
to the scheduler, the only information that is disclosed is its weight wj and its
expected processing time E [P j ]. In the model with release dates, it is also the
release time rj . The second phase consists of the actual process of scheduling
the jobs over time, processing times being realized according to the respective
distributions. Yet, we compare the expected outcome of the online stochastic
scheduling policy to the expected outcome of an optimal scheduling policy, ac-
cording to the definition of general scheduling policies by Möhring et al. [10].

In comparison to classical online models, we make two remarks. First, like
in classical online optimization, the adversary in the Sos model may choose
an arbitrary sequence of jobs in the first phase. These jobs are assumed to be
stochastic, with corresponding processing time distributions (deterministic jobs
being a special case). However, in the second phase, the actual processing times
are realized according to the exogenous probability distributions, thus they are
not under control of the adversary. Moreover, given the exogenously controlled
processing times, the best the adversary can do is in fact to use an optimal
stochastic scheduling policy. In this view, our model indeed incorporates some
of the ideas by Koutsoupias and Papadimitriou in [8].

Results and methodology. We derive worst case performance guarantees for the
expected performance of very simple, combinatorial online scheduling policies
for models with and without release dates. For the model without release dates,
P| |E [

∑
wj Cj ], this is a performance guarantee of

1 +
(Δ + 1)(m− 1)

2m
,
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matching the previously best known performance guarantee of [11] for the per-
formance of the WSEPT rule. Note, however, that this bound holds even though
we use a restricted scheduling policy that first has to assign jobs to machines
online, without knowledge of the jobs to come. For the model with release dates,
P|rj |E [

∑
wjCj ] we prove a more complicated performance guarantee for a class

of processing time distributions that we call δ-NBUE. They generalize NBUE
distributions2, which are contained as a special case. For NBUE distributions,
we obtain a performance bound strictly less than

5 +
√

5
2

− 1
2m

,

where (5 +
√

5)/2 ≈ 3.62. Thereby, we improve upon the previously best known
performance guarantee of 4 − 1/m for NBUE distributions, which was derived
for an LP based list scheduling policy [11]. Again, notice that this improved
bound holds even though we use a restricted policy that first has to assign jobs
to machines online, without knowledge of the jobs to come.

Our results are achieved by the following, quite simple Sos policy. Once the
jobs have been assigned to the machines, we assume that on every machine
the jobs are processed in the WSEPT order3. To make the online decisions on
machine assignments in the first phase, at any time when a job is presented, we
assign it to that machine where it causes the minimal increase in total expected
objective value; given the jobs that have been assigned so far, and given that the
jobs on each machine will be scheduled in WSEPT order. Intuitively, the reason
why we can recover (or improve, respectively) the previous best known results in
stochastic machine scheduling is the following: On the one hand, we restrict the
full power of scheduling policies by fixing machine assignments beforehand. On
the other hand, it is precisely this fixed machine assignment, together with an
averaging argument over the number of machines, that allows an improvement
in the analysis in comparison to general scheduling policies. We mention that,
to obtain our results, we in fact utilize one of the LP based lower bounds of [11].

2 Model Definition, Notation, and Preliminaries

Let n be the number of jobs, index j ∈ {1, . . . , n} denote a job, with associated
weight wj and processing time distribution P j . By E [P j ] we denote its expected
processing time, and pj denotes a particular realization of P j . In the model
with release dates, rj denotes the earliest point in time when job j can be
started. Given a schedule of start times S1, . . . , Sn for a particular realization
p = (p1, . . . , pn) of processing times, Cj = Sj + pj is the completion time of

2 A distribution X is called NBUE, new better than used in expectation, if
E [X − t | X > t ] ≤ E [X] for all t > 0.

3 In the case with release dates, this is in fact a modified version of the WSEPT order,
that will be explained later.
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job j, j = 1, . . . , n. Each job must be processed non-preemptively, on any of the
m machines, and each machine can process at most one job at a time. The goal
is to find a scheduling policy that minimizes the expected value of the weighted
completion times of jobs, E [

∑
wj Cj ].

A scheduling policy eventually yields a feasible m-machine schedule for each
realization p of the processing times. For a given policy, denoted by Π, let SΠ

j (p)
and CΠ

j (p) denote the start and completion times of job j for a given realiza-
tion p, and let SΠ

j (P ) and CΠ
j (P ) denote the associated random variables. Unless

there is danger of ambiguity, we also write Sj and Cj , for short. We let

E
[
ZΠ
]

= E
[∑

j
wj CΠ

j (P )
]

denote the expected performance of a scheduling policy Π. Then, if OPT is an
optimal scheduling policy according to the most general definition of stochastic
scheduling policies in [10], we say that a policy Π is a ρ–approximation if, for
some ρ ≥ 1,

E
[
ZΠ
] ≤ ρ E

[
ZOPT

]
.

We assume that the jobs are presented to the scheduler one by one, in the order
1, . . . , n. However, the number of jobs n is not known before. When a job is pre-
sented, the scheduler is informed about its weight wj and its expected processing
time E [pj ] (in the case with release dates, also its release date rj). When job j
appears, it must be assigned to a machine i ∈ {1, . . . ,m} immediately, and this
decision must not be revised later. For a given job j ∈W , and a given subset of
jobs W , let us define by H(j) the jobs in W that have a higher priority in the
WSEPT ordering, that is

H(j) =
{

k ∈ W | wk

E [P k]
≥ wj

E [P j ]

}
.

Notice that, by convention, H(j) contains job j, too. Accordingly, define

L(j) =
{

k ∈W | wk

E [P k]
<

wj

E [P j ]

}

as those jobs that have lower priority in the WSEPT order.
It is clear that the online scheduling policies for the Sos model can in fact

be interpreted as a subclass of stochastic scheduling policies in general. This
because, assuming a classical input for a stochastic scheduling problem where
all (stochastic) input data is disclosed at the outset, the only thing we require
in the Sos model is a fixed assignment of jobs to machines beforehand. There-
fore, the expected performance of an optimal Sos policy is no less than the ex-
pected performance of an optimal policy for a corresponding classical stochastic
problem. (The latter being defined by the input after the online phase.) Hence,
lower bounds on the expected value of an optimal policy known from stochastic
scheduling carry over to the online setting. We crucially exploit that fact, and
will utilize the following lower bound on the expected performance E

[
ZOPT

]
of
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an optimal stochastic scheduling policy. It is a generalization of a lower bound
by Eastman et al. [5] for the deterministic setting.

Lemma 1 (Möhring et al. [11]). For any instance of P| |E [
∑

wj Cj ], we have
that

E [Zopt] ≥
∑

j

wj

∑
k∈H(j)

E [P k]
m

− (m− 1)(Δ− 1)
2m

∑
j

wjE [P j ] ,

where Δ bounds the squared coefficient of variation of the processing times, that
is, Var[P j ]/E [P j ]

2 ≤ Δ for all jobs j = 1, . . . , n and some Δ ≥ 0.

This lemma indeed plays a crucial role in achieving performance guarantees
for the Sos policies presented in the following sections. Clearly, the claim of
Lemma 1 also applies to the setting with release dates P|rj |E [

∑
wj Cj ].

3 Lower Bounds on Approximation

The requirement of a fixed assignment of jobs to machines beforehand may be in-
terpreted as ignoring the additional information on the outcome of the stochastic
process (that is, the actual realization of processing times), at least with respect
to assignments of jobs to machines. In the following, we therefore give a lower
bound on the expected performance E

[
ZFIX

]
of an optimal stochastic schedul-

ing policy FIX that assigns jobs to machines beforehand. A fortiori, this lower
bound holds for the best possible Sos policy, too.

Theorem 1. For stochastic parallel machine scheduling with unit weights and
i.i.d. exponential processing times, P|pj ∼ exp(1)|E [

∑
Cj ], there exist instances

such that
E
[
ZFIX

] ≥ 3(
√

2− 1) · E
[
ZOPT

]− ε ,

for any ε > 0. Here, 3(
√

2 − 1) ≈ 1.24. Hence, no policy that uses fixed assign-
ments of jobs to machines can perform better in general.

Notice that the Theorem is formulated for the special case of exponentially
distributed processing times. Stronger bounds could probably be obtained for
arbitrary distributions. However, since our performance guarantees, as in [11],
will depend on the coefficient of variation of the processing times, we are particu-
larly interested in lower bounds for classes of distributions where this coefficient
of variation is small. The coefficient of variation of exponentially distributed
random variables equals 1. For example, for the case of m = 2 machines, we
get a lower bound of 8/7 ≈ 1.14, and for that case our performance bound
equals 2− 1/m = 1.5.

Proof (of Theorem 1). For simplicity, we will prove a slightly worse lower bound.
Let us consider an instance with m machines and n = m + �m/2
 exponentially
distributed jobs, pj ∼ exp(1). The optimal stochastic scheduling policy is SEPT,
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shortest expected processing time first [1, 20], and the expected performance is
(see, e.g., [17–Cor. 3.5.17])

E
[
ZOPT

]
= E
[
ZSEPT] =

∑
j

E
[
CSEPT

j

]
= m +

n∑
j=m+1

j

m
.

The best fixed assignment policy assigns 2 jobs each to �m/2
 of the machines,
and 1job each to 	m/2
 of the machines. Hence, there are m jobs with E [Cj ]=1,
and �m/2
 jobs with E [Cj ] = 2. The expected performance for the best fixed
assignment policy FIX is

E
[
ZFIX

]
=
∑

j

E
[
CFIX

j

]
= m + 2 · �m/2
 .

For small values m = 2, 3, 4 . . . , we calculate E
[
ZFIX

]
/E
[
ZOPT

]
= 8/7,

7/6, 32/27, . . . . It is easy to see that

E
[
ZFIX

]
E
[
ZOPT

] =
16m2

13m2 + o(m2)
,

and for m → ∞ we get a lower bound of 16/13 ≈ 1.23. Now the claim of the
theorem follows along the same lines if we redefine the number of jobs as n =
m + �√2m
. ��

4 Stochastic Online Scheduling

We next define a stochastic online scheduling policy for the problem without
release dates, P| |E [

∑
wj Cj ]. The basic idea is simple: any job j, once it appears,

will be assigned to the machine where it causes the minimal increase in expected
objective value (given that jobs 1, . . . , j−1 have been assigned already). In order
to be able to do that, we first need to specify how the jobs will be scheduled
on every single machine. We introduce a final bit of notation, letting Mi denote
all jobs that are assigned to machine i, and letting Mi(j) = {k < j | k ∈ Mi}
denote the subset of jobs assigned to a machine i before some job j appears4.

WSEPT (weighted shortest expected processing time first)
On each machine i, schedule the jobs Mi in non-decreasing order of their
ratios of weight over expected processing time wj/E [P j ].

This policy is known to be optimal for (stochastic) machine problems on a single
machine, 1| |E [

∑
wj Cj ], by results of Smith and Rothkopf, respectively [15, 12].

Now we can define the MinIncrease policy as follows.

4 Recall that we assume a numbering of the jobs in the order in which they appear in
the online sequence; hence k < j denotes jobs k that appeared earlier than job j.
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MinIncrease
When a job j is presented to the scheduler, it is assigned to the machine i
that minimizes the expression

incr (j, i) = wj ·
∑

k∈H(j)∩Mi(j)

E [P k] + E [P j ]·
∑

k∈L(j)∩Mi(j)

wk +wjE [P j ] .

In fact, given that WSEPT is used on each machine, MinIncrease just chooses
the machine where job j causes the least increase in expected performance.

Theorem 2. Consider the stochastic online scheduling problem on parallel ma-
chines, P| |E [

∑
wj Cj ]. Given that Var[P j ]/E [P j ]

2 ≤ Δ for all jobs j and some
constant Δ ≥ 0, the MinIncrease policy is a ρ–approximation, where

ρ = 1 +
(Δ + 1)(m− 1)

2m
.

Proof. Denote by E [incr (j) ] the increase in the expected objective value caused
by fixing the assignment of a job j using MinIncrease. Since MinIncrease
chooses the machine i on which j causes the least expected increase, the expected
increase is

E [incr (j) ] = min
i
{E [incr (j, i) ]}

= min
i

{
wj

∑
k∈H(j)∩Mi(j)

E [P k] + E [P j ]
∑

k∈L(j)∩Mi(j)

wk

}
+ wjE [P j ]

≤ 1
m

(
wj

∑
k∈H(j),k<j

E [P k] + E [P j ]
∑

k∈L(j),k<j

wk

)
+ wjE [P j ] ,

where the inequality holds because the least expected increase is not more than
the average expected increase over all machines. By summing up these quantities
over all jobs we obtain the expected performance E

[
ZMI
]

of the MinIncrease
policy.

E
[
ZMI
]

=
∑

j

E [incr (j) ]

≤ 1
m

∑
j

(
wj

∑
k∈H(j),k<j

E [P k] + E [P j ]
∑

k∈L(j),k<j

wk

)
+
∑

j

wjE [P j ]

=
1
m

∑
j

wj

∑
k∈H(j)

E [P k] +
m− 1

m

∑
j

wjE [P j ] ,

where the last equality holds by index rearrangement, since∑
j

E [P j ]
∑

k∈L(j),k<j

wk =
∑

j

wj

∑
k∈H(j),k>j

E [P k] .
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Now, we plug in the inequality of Lemma 1, and using the trivial fact that∑
j wjE [P j ] is a lower bound for the expected performance E

[
ZOPT

]
of an

optimal policy, we obtain

E
[
ZMI
] ≤ E

[
ZOPT

]
+

(Δ− 1)(m− 1)
2m

∑
j

wjE [P j ] +
m− 1

m

∑
j

wjE [P j ]

≤
(

1 +
(Δ + 1)(m− 1)

2m

)
· E [ZOPT

]
. �

This performance guarantee matches the currently best known performance
guarantee for the classical stochastic setting, which was derived for the per-
formance of the WSEPT rule in [11]. The WSEPT rule, however, requires the
knowledge of all jobs with their weights wj and expected processing times E [P j ]
at the outset. In contrast, the MinIncrease policy decides on machine assign-
ments online, without any knowledge of the jobs to come. Finally, it is worthy
to note that simple instances show that these two policies are indeed different.

Lower bounds for MinIncrease. The lower bound on the performance ratio for
any fixed assignment policy given in Theorem 1 holds for the MinIncrease pol-
icy, too. Hence, in general, MinIncrease cannot be better than 1.24-
approximative. We can strengthen the lower bound via more sophisticated in-
stances, but the computations of the optimal values become unpleasant. We next
give an instance for m = 2 machines.

Example 1. We are given 6 jobs with exponentially distributed processing times
such that E [P 1] = E [P 4] = 1, E [P 2] = E [P 5] = k and E [P 3] = E [P 6] = 2k, for
some fixed k. The jobs appear in order of their indices in the online sequence.

Without going into further details, it turns out that the expected performance of
the MinIncrease policy is 6 + 9k, and the expected performance of an optimal
scheduling policy is 5 + k(167/24 + 7/(1 + k) + 1/(2 + 4k)). For k → ∞, this
yields a lower bound of 216/167 ≈ 1.29, whereas Theorem 2 yields a performance
guarantee of 1.5.

For less restricted probability distributions, i.e., non-exponential and with
larger coefficients of variation, we obtain a lower bound of 3/2 on the expected
performance of MinIncrease relative to an optimal scheduling policy. However,
this is less meaningful compared to the performance bound of Theorem 2, which
depends on an upper bound Δ on the squared coefficient of variation. We skip
the details.

5 Stochastic Online Scheduling with Release Dates

In this section we consider the problem of stochastic online scheduling on parallel
machines where jobs have release dates. As the optimal single machine scheduling
policy is unknown to date for this problem, we analyze the expected performance
of the MinIncrease policy which runs the following single machine scheduling
policy.
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α-Shift-WSEPT
Modify the release date rj of each job j such that r′

j = max{rj , α E [P j ]},
for some fixed 0 < α ≤ 1. At any time t, when the machine is idle,
start the job with the highest priority in the WSEPT order among all
available jobs (respecting the modified release dates).

In the deterministic (online) setting, this policy was proposed for parallel ma-
chines in [9]. For the analysis of this policy, we restrict ourselves to random
variables that we call δ-NBUE. This is a generalization of NBUE random vari-
ables.

Definition 1 (δ-NBUE). A non-negative random variable X is δ-NBUE if,
for δ ≥ 1,

E [X − t |X > t ] ≤ δ E [X] for all t ≥ 0.

Ordinary NBUE distributions are by definition 1-NBUE. For a NBUE random
variable X, Hall and Wellner [7] showed that the (squared) coefficient of variation
is bounded by 1, that is, Var[X]/E [X]2 ≤ 1. From their work, it also follows
that, if X is δ-NBUE, then Var[X]/E [X]2 ≤ 2δ − 1. Examples of ordinary
NBUE (or 1-NBUE) distributions are exponential, Erlang, uniform, or Weibull
distributions (with shape parameter at least 1). We next derive an upper bound
on the expected completion time of a job, E [Cj ], when scheduling jobs on a
single machine according to the α-Shift-WSEPT policy. This bound is used later
to analyze the expected performance of MinIncrease.

Lemma 2. Let all processing times be δ-NBUE. Then the expected completion
time of job j for α-Shift-WSEPT on a single machine can be bounded by

E [Cj ] ≤ (1 + δ/α) r′
j +

∑
k∈H(j)

E [P k] .

Proof. We consider some job j. Let us denote by B the event that the machine
is busy processing some job at time r′

j , and let us denote by I the complement
of B, namely that the machine is idle (or just finished processing some job) at
time r′

j . Under the condition I it could still be that there are higher priority
jobs k ∈ H(j) \ {j} available at time r′

j , but in any case the expected start time
of job j can be postponed by at most∑

k∈H(j)\{j}
E [P k | I ] .

However, due to independence of processing times, we have that E [P k | I ] =
E [P k], and therefore

E [Sj | I ] ≤ r′
j +

∑
k∈H(j)\{j}

E [P k] .

Consider condition B and let us denote by E [x(B)] the expected length of the
time period until the machine becomes idle for the first time after r′

j . Under the
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condition B, for any realization p of the processing times, conditioned on B, some
job �(p) is in process at time r′

j (in fact, �(p) might have lower or higher priority
than j). Any such job � was available at time r′

� < r′
j , and by definition of the

modified release dates, we therefore know that E [P �] ≤ (1/α)r′
� < (1/α)r′

j for
any such job �. Moreover, letting t = r′

j −S�, the expected remaining processing
time of such job �, conditioned on the fact that it is indeed in process at time
r′
j , is E [P � − t | P � > t ]. Due to the assumption of δ-NBUE processing times,

we thus know that

E [P � − t | P � > t ] ≤ δ E [P �] ≤ (δ/α)r′
j .

Therefore, the expected remaining processing time of any job � that might be in
process at time r′

j is bounded by (δ/α)r′
j , and thus

E [x(B)] ≤ (δ/α)r′
j .

Repeating the same argument as above, we can now conclude that

E [Sj | B ] ≤ (1 + δ/α) r′
j +

∑
k∈H(j)\{j}

E [P k] . (1)

As each of the two conditional expectations E [Sj | I ] and E [Sj | B ] is bounded
by the right hand side of (1), we obtain that

E [Sj ] ≤ (1 + δ/α) r′
j +

∑
k∈H(j)\{j}

E [P k] ,

and the fact that E [Cj ] = E [Sj ] + E [P j ] concludes the proof. ��

In fact, it is quite straightforward to use Lemma 2 in order to show the
following.

Corollary 1. The α-Shift-WSEPT algorithm is a 3-approximation for the sin-
gle machine problem 1|rj |E [

∑
wjCj ], for NBUE processing times.

We just use that δ = 1, and we choose α = 1. We skip further details, and note
that this matches the best known LP based performance bound derived in [11],
which even holds for arbitrary processing time distributions.

The MinIncrease policy for the problem with release dates is now the fol-
lowing. In order to decide on which machine a job should go, we just ignore the
release dates, and use the same policy for assigning jobs to machines that we
used before in the setting without release dates.

Theorem 3. Consider the stochastic online scheduling problem on parallel ma-
chines with release dates, P|rj |E [

∑
wj Cj ]. Given that all processing times are

δ-NBUE, the modified MinIncrease policy is a ρ–approximation, where

ρ = 1 + max{1 + δ/α , α + δ + (m− 1)(Δ + 1)/(2m)} .
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Here, Δ is such that Var[P j ]/E [P j ]
2 ≤ Δ for all jobs j. In particular, since all

processing times are δ-NBUE, we know that Δ ≤ 2δ−1 in the above performance
bound.

Proof. Let ij be the machine to which job j is assigned. Then, by Lemma 2 we
know that

E [Cj ] ≤ (1 +
δ

α
)r′

j +
∑

k∈H(j)∩Mij

E [P k] , (2)

and the expected value of MinIncrease can be bounded by

E
[
ZMI
] ≤ (1 +

δ

α

)∑
j

wj r′
j +
∑

j

wj

∑
k∈H(j)∩Mij

E [P k] (3)

Using an index rearrangement argument as in the proof of Theorem 2, we can
write

∑
j

wj

∑
k∈H(j)∩Mij

E [P k]=
∑

j

⎛
⎜⎝wj

∑
k∈H(j)∩Mij

(j)

E [P k]+E [P j ]
∑

k∈L(j)∩Mij
(j)

wk+wjE [P j ]

⎞
⎟⎠ .

By definition of MinIncrease, we know that job j is assigned to the machine
which minimizes the sums in parenthesis of the right hand side of this equation.
Hence, by an averaging argument, we know that

∑
j

wj

∑
k∈H(j)∩Mij

E [P k]≤
∑

j

⎛
⎝wj

∑
k∈H(j),k<j

E [P k]
m

+ E [P j ]
∑

k∈L(j),k<j

wk

m
+ wjE [P j ]

⎞
⎠

=
∑

j

wj

∑
k∈H(j)

E [P k]
m

+
m − 1

m

∑
j

wjE [P j ] ,

where the last equality follows from index rearrangement. Plugging this into (2),
leads to the following bound on the expected performance of MinIncrease.

E
[
ZMI
] ≤ (1 +

δ

α

)∑
j

wjr
′
j +
∑

j

wj

∑
k∈H(j)

E [P k]
m

+
m− 1

m

∑
j

wjE [P j ] .

As mentioned before, the relaxed problem without release dates provides a
lower bound on the expected optimum with release dates. We therefore can plug
into the above inequality the bound of Lemma 1, and obtain

E
[
ZMI
] ≤ (1 +

δ

α

)∑
j

wjr
′
j + E

[
ZOPT

]
+

(m− 1)(Δ + 1)
2m

∑
j

wjE [P j ]

= E
[
ZOPT

]
+
∑

j

wj

((
1 +

δ

α

)
r′
j +

(m− 1)(Δ + 1)
2m

E [P j ]
)

. (4)
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By bounding r′
j by rj + αE [P j ], we obtain the following bound on the term in

parenthesis of the sum in the right hand side of inequality (4).

(
1 +

δ

α

)
r′
j +

(m− 1)(Δ + 1)
2m

E [P j ]

≤ (1 +
δ

α

)
rj +

(
α + δ +

(m− 1)(Δ + 1)
2m

)
E [P j ]

≤ (rj + E [P j ]
)
max

{
1 +

δ

α
, α + δ +

(m− 1)(Δ + 1)
2m

}
.

The proof is completed by using this inequality in equation (4), and applying the
trivial lower bound

∑
j wj(rj + E [P j ]) ≤ E

[
ZOPT

]
on the expected optimum

performance. ��
For NBUE processing times, where we can choose Δ = δ = 1, the approxima-

tion ratio is minimal for α = (
√

5m2 − 2m + 1−m + 1)/(2m), obtaining a ratio
of 2+(

√
5m2 − 2m + 1 + m− 1)/(2m), which is less than (5+

√
5)/2−1/(2m) ≈

3.62 − 1/(2m), improving upon the previously best know approximation ratio
of 4−1/m from [11].
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Abstract. Finding a minimum size 2-vertex connected spanning sub-
graph of a k-vertex connected graph G = (V, E) with n vertices and m
edges is known to be NP-hard and APX-hard, as well as approximable in
O(n2m) time within a factor of 4/3. Interestingly, the problem remains
NP-hard even if a Hamiltonian path of G is given as part of the input.
For this input-enriched version of the problem, we provide in this pa-
per a linear time and space algorithm which approximates the optimal
solution by a factor of no more than min

{
5
4 , 2k−1

2(k−1)

}
.

1 Introduction

The problem of finding a minimum size 2-vertex connected (simply biconnected,
in the following) spanning subgraph (MBSS problem) of a biconnected, undi-
rected graph G = (V, E), with n vertices and m edges, is one of the classical
problems in computer science and combinatorial optimization [9]. It is known to
be NP-hard, since its decision version contains as a special case the Hamiltonian
cycle problem (i.e., the problem of deciding whether a graph G contains a simple
cycle that includes all the vertices), which is well-known to be NP-complete [5].

Due to its relevance and to the great number of applications it finds in differ-
ent fields, several approximation algorithms for solving this problem have been
devised in the past few years. Khuller and Vishkin [10] introduced the notions
of carving of a graph to establish an approximation factor of no more than 5/3.
Their algorithm has been firstly improved by Garg et al. [6], who obtained an
approximation ratio of 3/2. After, this ratio was improved to 4/3 by Vempala
and Vetta [13]. Concerning inapproximability results, the problem is known to
be APX-hard [11].

The weighted version of the problem has been deeply investigated as well.
In this case, the problem admits a

(
2 + 1

n

)
-approximation algorithm [10], while

if G satisfies the triangle inequality, then it is approximable within 3/2 [4].
Moreover, for any integer d = o(log n), if G is complete and Euclidean in Rd
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(i.e., G is embedded in the Euclidean d-dimensional space and the edge weights
correspond to the Euclidean d-dimensional distance between the corresponding
endvertices), then the problem admits a PTAS [2]. Concerning inapproximability
results, the problem is not approximable (unless P=NP) within 68569

68564−ε, for any
constant ε > 0 [1].

As far as the edge version of the problem is concerned, i.e., that of finding
a minimum size 2-edge connected spanning subgraph of a 2-edge-connected,
undirected graph, the best known approximation ratio is 5/4 [7]. In the same
paper, the authors claimed that their algorithm can be extended, by preserving
the approximation ratio, to the vertex version of the problem, but unfortunately
this seems not to be the case [8]. As a consequence, there is currently a gap
between the approximability of the vertex and the edge version of the problem,
i.e., 4/3 versus 5/4.

A question which naturally arises is that of studying whether the approxi-
mation guarantee can be improved once the input of the problem is enriched. In
particular, Papadimitriou and Steiglitz [12] proved that the problem of deter-
mining whether a graph contains a Hamiltonian cycle remains NP-complete even
if a Hamiltonian path is given as part of the input. It follows that the problem
of determining whether a graph admits a biconnected spanning subgraph of size
k ≥ n, once a Hamiltonian path is given as part of the input, is NP-complete as
well. In this paper we consider the optimization version of this latter problem
(MBSSHP problem for short).

To the best of our knowledge, for the MBSSHP problem the same approxi-
mation factor as for the MBSS problem holds, also when the edge-version of the
problem is considered. Hence, also in this case, there is a gap between the ap-
proximability of the vertex and the edge version of the problem, i.e., 4/3 versus
5/4.

In this paper, we get to the target of closing this gap. Indeed, we show
that the MBSSHP problem can be approximated in linear time and space with a
performance guarantee of 5/4. Moreover, we show that if G is k-vertex connected,
k > 3, then our algorithm can be enhanced to return a 2k−1

2(k−1) -approximated
solution. Our approach deviates significantly from that proposed for the MBSS
problem by Vempala and Vetta [13], since their algorithm cannot guarantee an
approximation factor better than 4/3 when adapted to the MBSSHP problem.

From an application point of view, our algorithm has a practical impact on
chain communication networks, where we have a set of vertices v1, v2, . . . , vn

which mutually exchange messages through a chain of links (vi, vi+1), i =
1, . . . , n − 1. Suppose now we have a set of potential additional links (vi, vj),
1 ≤ i < j + 1 ≤ n, such that the graph resulting from the chain enriched of
the additional edges is biconnected. Then, one might be interested in making
the communication between vertices immune to single vertex failures, by using a
minimum number of links. In this case, our algorithm computes an approximated
solution in linear time and space with a performance guarantee of 5/4.

The paper is organized as follows: in Section 2 we introduce basic definitions
and notations used in the paper. In Section 3 we present two simple algorithms
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for the MBSSHP problem. In Section 4, after analyzing the known lower bounds
for the MBSS problem, we first present a new lower bound, then we refine the
algorithms of Section 3.

2 Basic Definitions

Let G = (V, E) be a simple undirected graph (i.e., without loops and parallel
edges), where V is the set of vertices and E ⊆ V × V is the set of edges. Let
n ≥ 3 and m be the number of vertices and the number of edges, respectively.
For all v ∈ V , δG(v) denotes the degree of v in G, i.e., the number of vertices
adjacent to v with respect to the edge set of G. A graph H = (V (H), E(H))
is called a subgraph of G if V (H) ⊆ V and E(H) ⊆ E. If V (H) = V then H
is called a spanning subgraph of G. For any U ⊆ V , the graph GU = (U, EU )
where EU = {(v, v′) ∈ E | v, v′ ∈ U} is said to be induced from U while the
graph G′ = (U ∪ {xU}, EU ∪ E′), where xU /∈ V and E′ = {(u, xU ) | (u, v) ∈
E with u ∈ U ∧ v ∈ V \ U}, is said to be obtained from G by shrinking V \ U
into one vertex xU .

A simple path Π (or a path for short) in G is a subgraph with V (Π) =
{v1, . . . , vk | vi �= vj for i �= j} and E(Π) = {ei = (vi, vi+1) | 1 ≤ i < k},
also denoted as Π(v1, vk) or 〈v1, v2, . . . , vk〉. Path Π is said to go from v1 to vk,
called the endvertices of Π, passing through the internal vertices v2, v3, . . . , vk−1.
A cycle is a path whose endvertices coincide. G is said to be Hamiltonian if it
has a spanning cycle. A spanning path ΠG = 〈v1, v2, . . . , vn〉 of G is called a
Hamiltonian path. Edges in E(ΠG) are called path edges, while edges in F =
E \ E(ΠG) are called cycle edges. By E(ei) we denote the set of all cycle edges
forming a fundamental cycle with ei, i.e., a cycle containing only one cycle edge.
If f ∈ E(ei) then we say f covers ei. Thus, f = (vj , vh), with j < h, covers ei

iff j ≤ i < h. For any cycle edge f = (vi, vj), with i < j, we call vi (resp., vj)
the left (resp., right) endvertex of f . We denote by Gn the class of graphs of n
vertices having a Hamiltonian path.

A graph G is connected if, for any u, v ∈ V , there exists a path in G going
from u to v. The connected components of a graph G are the maximal (w.r.t.
vertex insertion) connected subgraphs of G. A graph G is k-vertex connected (or
simply k-connected) if n ≥ k + 1 and for any V ′ � V of k− 1 vertices, the graph
induced by V \ V ′ is connected. When k = 2, G is said to be biconnected. The
maximum integer k such that G is k-connected is said to be the connectivity
number of G and it is denoted by κ(G).

A subset C of V , with |C| = k is a k-separator (or simply separator) if
GV \C is not connected, that is, there exists a two partition V�, Vr of V \ C
such that G has no edges with one endvertex in V� and the other in Vr. We
say that V�, C, Vr is a k-separation of G. A separator C is said to be minimal
if no proper subset of C is a separator. Observe that κ(C) ≥ κ(G), for every
separator C. Let ei ∈ E(ΠG). By κ�(ei) (resp., κr(ei)) we denote the cardinality
of a minimal (unique) separation V�, C, Vr such that C ∪ V� = {v1, v2, . . . , vi}
(resp., C ∪ Vr = {vi+1, vi+2, . . . , vn}). Then, κ(ei) = min {κ�(ei), κr(ei)}.
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In the rest of the paper, Opt(G) will denote the size of a minimum
biconnected spanning subgraph (MBSS) of a biconnected graph G. Clearly,
Opt(G) ≥ n.

3 Basic Algorithm

In this section we describe a very simple algorithm for finding a biconnected
spanning subgraph of an undirected graph G, with the hypothesis that we have a
Hamiltonian path ΠG of G and κ(G) > 1. We show that the approximation ratio
depends on κ(G). Henceforth, unless stated otherwise, ΠG = 〈v1, v2, . . . , vn〉.
Moreover, by fi we denote a cycle edge of E(ei) with right endvertex of maximum
index.

The basic idea of the algorithm is simple. Starting from a spanning subgraph
H of G with no edges, the algorithm processes each vertex in order from v1 to
vn. At each step it augments E(H) by adding edges. The invariant property
maintained by the algorithm is the following: if it is currently exploring ΠG

from vi to vj , i < j, then the subgraph H ′ of H induced from {v1, v2, . . . , vi} is
already biconnected. The set of edges to be added is determined by the function
Expand. Thus, the more powerful the function Expand, the lower the size of the
computed biconnected spanning subgraph. We propose a first simple version of
the function Expand.

Algorithm BSS(G, ΠG = 〈v1, v2, . . . vn〉);
Input: A biconnected graph G and a Hamiltonian path ΠG of G;
Output: A biconnected spanning subgraph H of G.
begin

H = (V, ∅);
ΠR = ΠG(v2, vn);
while ΠR �= 〈vn〉 do

(F ′, EΠ) = Expand(G, ΠR); %F ′ ⊆ F = E \ E(ΠG), EΠ ⊆ E(ΠG)
i = max{j | (vh, vj) ∈ F ′, h < j};
E(H) = E(H) ∪ F ′ ∪ EΠ ;
ΠR = ΠG(vi, vn);

end while
return H;

end.

Function Expand(G, ΠR = 〈vi+1, vi+2, . . . , vn〉);
Input: A graph G and a path ΠR of G;
Output: A set of cycle edges F ′ ⊆ E \ E(ΠG) and a set of path edges EΠ ⊆ E(ΠR).
begin

Let EΠ ⊆ E(ΠR) be the set of path edges covered by fi;
return ({fi}, EΠ);

end.

Theorem 1. The algorithm BSS computes a κ(G)
κ(G)−1 -approximated solution in

O(m) time and space.
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Proof. At a given iteration, let ΠR = ΠG(vi+1, vn). Since κ(ei) ≥ κ(G), we have
that fi = (v, vi+j+1), with j ≥ min {n− i− 1, κ(G)− 1}. So we add at most one
cycle edge every κ(G) − 1 edges of ΠR plus one extra cycle edge if ΠR has a
length less than κ(G)−1. Since ΠG is a subgraph of H, we achieve the following
approximation ratio:

|E(H)|
Opt(G)

≤
n− 1 +

⌈
n−1

κ(G)−1

⌉
n

≤ 1 +

⌈
n

κ(G)−1

⌉
− 1

n
≤ 1 +

n
κ(G)−1

n
=

κ(G)
κ(G)− 1

.

Moreover, at each iteration we only have to explore the cycle edges belonging to
E(ei). As we take the one whose right endvertex has maximum index and since
ΠR updates to Π(vi+j+1, vn), then the algorithm does not need to explore these
edges any more. Hence, the time and space complexity is O(m). ��

The function Expand(G, ΠR) defined above uses little information implied by
κ(G). To improve the performance of the algorithm we introduce the relation
of semi-adjacency between cycle edges. So we say that two cycle edges f =
(vi, vj+1), f ′ = (vj , vk), with i < j < k − 1, are semi-adjacent. Path edge ej is
said to be the middle of f and f ′. We can now prove the following:

Lemma 1. For every ei, either fi or a pair semi-adjacent edges f, f ′ (one of
which belongs to E(ei)) cover min{n− i− 1, 2(κ(G)− 1)} edges of ΠG(vi+1, vn).

Proof. Let vj+1 be the right endvertex of fi. If fi covers min{n−i−1, 2(κ(G)−1)}
edges of ΠG(vi+1, vn) then the claim is true. So we can assume that fi covers
k < min{n − i − 1, 2(κ(G) − 1)} edges of ΠG(vi+1, vn). We say that vh, with
i < h ≤ j is a potential semi-adjacent vertex if vh+1 is an endvertex of some
edges in E(ei). Indeed, if some edge in E(ej) has vh as endvertex, then this
edge is semi-adjacent to some edge in E(ei). Since κ(ei) ≥ κ(G), then there are
k1 ≥ κ(G) − 1 vertices of ΠG(vi+2, vj+1) that are endvertices of some edge in
E(ei). Hence, k1 vertices of ΠG(vi+1, vj) are potential semi-adjacent vertices,
while the remaining

k2 = k − k1 ≤ k − κ(G) + 1

are not. Since κ(ej) ≥ κ(G), then at least κ(G) − 1 vertices of ΠG(vi+1, vj)
are endvertices of some edges in E(ej). As k2 ≤ k − κ(G) + 1 < κ(G) − 1 this
means that there exist edges in E(ej) semi-adjacent to some edges in E(ei).
Among such edges, choose any one (say f) whose right endvertex has maximum
index. We claim that f covers at least min{n − j − 1, 2(κ(G) − 1) − k} edges
of ΠG(vj+1, vn). To prove this, suppose it is not true, that is f covers h <
min{n− j− 1, 2(κ(G)− 1)− k} ≤ 2(κ(G)− 1)− k edges of ΠG(vj+1, vn). In this
case, if we remove the first h + 1 vertices of ΠG(vj+1, vn) and all non potential
semi-adjacent vertices in ΠG(vi+1, vj), we break the graph into two connected
components. But the number of vertices removed is

k2 + h + 1 ≤ k − κ(G) + 1 + h + 1 < k − κ(G) + 1 + 2κ(G)− 2− k + 1 = κ(G)

and so G is not κ(G)-connected. We have obtained a contradiction. ��
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Using Lemma 1 we can implement a new powerful function Expand such that:

Theorem 2. The algorithm BSS computes a 2κ(G)−1
2(κ(G)−1) -approximated solution

in O(m) time and space.

Proof. At a given iteration, let vj+1 in ΠR = ΠG(vi+1, vn) be the right endvertex
of fi. If fi covers min{n − i − 1, 2(κ(G) − 1)} edges of ΠR, set EC = {fi} and
EΠ = {ei+1, ei+2, . . . , ej}, otherwise from Lemma 1 there are two semi-adjacent
edges f, f ′, one of which belongs to E(ei), covering min{n− i− 1, 2(κ(G)− 1)}
edges of ΠR. In this case EΠ it the set of path edges of ΠR covered by f, f ′

minus the middle one, while EC = {f, f ′}. So we add at most one cycle edge
every 2(κ(G)− 1) edges of ΠR plus one extra cycle edge if ΠR has a length less
than 2(κ(G)− 1). Thus, we achieve the following approximation ratio:

|E(H)|
Opt(G)

≤
n− 1 +

⌈
n−1

2(κ(G)−1)

⌉
n

≤ 1 +
n

2(κ(G)−1)

n
=

2κ(G)− 1
2(κ(G)− 1)

.

From Lemma 1 it also follows that at each iteration we have to explore the edges
belonging to E(ei) and the edges belonging to E(ej). Since the next iterations
the algorithm will not explore edges in E(ei) any more, then the time and space
complexity is O(m). ��

The second function Expand we have just defined, uses κ(G) as a lower bound
for κ(ei), 1 ≤ i ≤ n−1. Looking at the proof of Lemma 1 one may convince that

Remark 1. The practical approximation ratio we obtain is given by the minimum
value κ(ei) of all sets E(ei) the algorithm considers.

The following lemma shows that the approximation ratio of Theorem 2 is
tight when compared to the trivial lower bound n.

Lemma 2. ∀k ≥ 2, there exists a k-connected graph G ∈ Gn for which the ratio
between Opt(G) and n is equal to 2k−1

2(k−1) .

Proof. The proof is constructive. Let n = 2j(k−1)+4k−1, where j is a positive
integer. We first build a bipartite graph G′ ∈ Gn. We number the vertices of G′

from 1 to n. Let VC = {ui = v2k+2i(k−1)|i = 0, . . . , j}. Let V0 = {v1, v2, . . . , u
0}

and Vj+1 = {uj , . . . , n}, while

Vi = {ui−1, . . . , ui}, with i = 1, . . . , j.

Notice that Vi ∩ Vi+1 = {ui}. For every i = 0, 1, . . . , j, let V e
i (resp., V o

i ) be the
set of even (resp., odd) vertices of Vi. The set of edges of G′ is defined as follows:

E(G′) =
j+1⋃
i=0

(
V e

i × V o
i

)
.
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Notice that 〈v1, v2, . . . , vn〉 is a Hamiltonian path of G′. Clearly κ(G′) = 1, since
every vertex in VC is a cut-vertex, i.e., a vertex whose removal disconnects G′.
From G′ we build a new graph G = (V, E) with κ(G) = k. Let V = V (G′) and
E = E(G′) ∪ E′, where

E′ = {(u, v)|u ∈ V e
i , v ∈ V e

i+1, i = 0, 1, . . . , j}.

It is easy to see that G is k-connected. Let us consider the topological structure
of a MBSS H of G. As every vertex ui ∈ VC in G′ is a cut-vertex, it follows that
E(H) must contain a cycle edge in E′ covering ui (i.e., an edge whose addition
to G′ makes ui not to be a cut-vertex). By construction, the cycle edges covering
ui do not cover uj , with j �= i. So H has at least

|VC | = j + 1 =
n− 4k + 1
2(k − 1)

+ 1 =
n− 2k − 1
2(k − 1)

edges of E′. Moreover, since there is no edge between pairs of odd vertices, this
implies that H must have 2

⌈
n
2

⌉
= n + 1 edges of E(G′), where the equality

follows from the fact that n is odd. So the approximation ratio is

lim
n→+∞

n + 1 + |VC |
n

= 1+ lim
n→+∞

1 + n−2k−1
2(k−1)

n
= 1+ lim

n→+∞
n− 3

2n(k − 1)
=

2k − 1
2(k − 1)

.

��

4 Improving the Algorithm

4.1 Considerations About Well-Known Lower Bounds

As seen in the previous section, the approximation ratio we can achieve is strictly
related to the connectivity value of G. Since ∀κ(G) ≥ 3, 2κ(G)−1

2(κ(G)−1) ≤ 5
4 , our aim

now is to improve the approximation ratio for graphs G with κ(G) = 2. In [13],
the authors give an improvement for the lower bound of Opt(G) based on the
following definitions:

Definition 1. A vertex v is a beta-vertex if there exist two vertices u1, u2 such
that the graph induced from V \{u1, u2} has at least three connected components,
one of which only contains v.

Definition 2. Two vertices v1, v2 are a beta-pair if there exist two vertices
u1, u2 such that the graph induced from V \ {u1, u2} has at least three connected
components, one of which only contains v1, v2.

Definition 3. A graph G is beta-free if it has no beta-structures, i.e., neither
beta-vertices nor beta-pairs.



188 D. Bilò and G. Proietti

Fig. 1. A tight example for the lower bound given in [13] and in [7]. The edges of a
MBSS are represented in bold

In [13], the authors only consider instances for which G is beta-free. They
first show that the case of beta-pairs can be reduced to that of beta-vertices.
Then, they consider the case of a beta-vertex v of G. Assume u1, u2 are the two
vertices adjacent to v. Let G′ = G \ {v}. Since the two edges incident to v are
forced in any MBSS of G, an α-approximated solution for G can be obtained
from an α-approximated solution for G′ by adding the edges incident to v. In
this case, it is easy to build a Hamiltonian path ΠG′ of G′ from a Hamiltonian
path ΠG of G: simply remove the beta-vertex v and add edge (u1, u2). If v is an
endvertex of ΠG, then the graph induced from V \ {u1, u2} has another beta-
vertex u different from v. In this case remove u (as it cannot be an endvertex of
ΠG) and add edge (u1, u2).

Now we describe a linear time algorithm that uses ΠG to remove all beta-
vertices and all beta-pairs from G. For every vertex vi, 1 < i ≤ n−3, if δG(vi+1) =
2 and fi−1 does not cover ei+2, then vi+1 is a beta-vertex. Otherwise, if vi+3 �=
vn, vi+1 is at most adjacent to vi, vi+2, vi+3, while vi+2 is at most adjacent to
vi+1, vi+3, vi and fi−1 does not cover ei+3, then vi+1, vi+2 is a beta-pair.

In [13] it is shown that one can find a 4/3-approximated solution in O(n2m)
time and linear space. The lower bound used there to estimate Opt(G) (the
same lower bound was used in [7]) is given by the number of beta-structures
removed from G plus the size of a minimum spanning subgraph H with δH(v) ≥
2,∀v ∈ V (H), of the graph computed from the beta-free reduction of G. However,
whenever G ∈ Gn is a beta-free graph, this lower bound is at most n+1. Indeed,
a subgraph H of G made up by a Hamiltonian path ΠG, plus two extra edges
(v1, u), (u′, vn) ∈ E, is a spanning subgraph of G such that δH(v) ≥ 2,∀v ∈ V . In
Figure 1 we show a beta-free graph G ∈ Gn whose MBSS has size asymptotically
equal to 4

3n.

4.2 Our Lower Bound

As seen before, the core of the MBSS problem is not just the achievement of a
better algorithm, but also the careful estimate of the size of an optimal solution.
The purpose of this section is to present a new lower bound.

Let α(G) denote the independence number of G, i.e., the size of a largest
set of vertices U (called maximum independent set) of G that induces an empty
graph, i.e., a graph with no edges. The following two lemmas are well-known.

Lemma 3. [3] Every graph G with n ≥ 3 and κ(G) ≥ α(G) is Hamiltonian. ��
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Lemma 4. [6] For a biconnected graph G, Opt(G) ≥ max{n, 2α(G)}. ��
The join G = G1 + G2 of two graphs G1 = (V1, E1) and G2 = (V2, E2),

where V1 ∩ V2 = ∅ and E1 ∩E2 = ∅, is the graph union G1 ∪G2 (i.e., the graph
(V1 ∪ V2, E1 ∪ E2)) together with all the edges joining V1 and V2.

Let K(|U |,Kk) denote the join of the empty graph of |U | vertices and the
complete graph Kk (i.e., the graph having an edge between every pair of its k
vertices). We can now prove the following:

Lemma 5. For every integer k ≥ 2, K(k+1,Kk) is a maximum-size k-connected
non-Hamiltonian graph with 2k + 1 vertices. Moreover, any other k-connected
non-Hamiltonian graph G with 2k + 1 vertices is isomorphic to a subgraph of
K(k + 1,Kk).

Proof. From Lemma 3, a non-Hamiltonian k-connected graph must have at least
2k + 1 vertices. Since α(K(k + 1,Kk)) = k + 1, from Lemma 4 it follows that
K(k + 1,Kk)) is not Hamiltonian (notice that, in every biconnected spanning
subgraph of K(k + 1,Kk), at least 2 vertices of V (K(k + 1,Kk)) \ U must have
degree 3). The insertion of an edge in K(k + 1,Kk) causes the independence
number to decrease to k, and so from Lemma 3 the graph becomes Hamiltonian.
Every non-Hamiltonian k-connected graph G with 2k + 1 vertices must have
α(G) = k + 1, and so there exists a subgraph of K(k + 1,Kk) isomorphic to G.
The claim follows. ��

Let G = (V, E) be a biconnected graph. For every k-partition V1, V2, . . . , Vk

of V , there exist two edges with one endvertex in Vi and the other in V \ Vi,
i = 1, . . . , k. Looking at the proof of Lemma 5, we deduce the following:

Lemma 6. Let C be a k-separator and let V1, V2, . . . Vk+1 be a (k + 1)-partition
of V \ C. If by shrinking each Vi into a node xi we obtain a graph isomorphic
to a subgraph of K(k + 1,Kk) (with x1, x2, . . . , xk+1 mapped to U), then G is
not Hamiltonian, i.e., Opt(G) ≥ n + 1. Moreover, every biconnected spanning
subgraph of G has two vertices of C with degree greater than 2.

Now it becomes trivial to prove the following:

Corollary 1 (Lower Bound). Let G be a biconnected graph and let
C1, C2, . . . , Cp be disjoint separators. If Cj , j = 1, . . . , p, satisfies conditions of
Lemma 6, then Opt(G) ≥ n + p. ��

Before ending this subsection we introduce a new topological structure that
let us allow to design a better algorithm w.r.t. the one described in Theorem 2.

Definition 4. A path edge ei+3 = (vi+3, vi+4) in ΠG, generates a left hook (see
Figure 2) if the following conditions hold:

(i) δG(vi+2) = 2;
(ii) E(ei)∩E(ei+1) = {(vj , vi+3), (vj , vi+4)}, for a unique j ≤ i (vj is the tip of

the hook);
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(iii) E(ei+4) contains at least one edge with vi+1 as left endvertex, plus (possibly)
edges with vi+4 as left endvertex; these are the only admissible covering edges
for ei+4;

(iv) there exists a vertex vt �= vj, with t ≤ i.

Definition 5. A path edge (vi, vi+1) in ΠG = 〈v1, v2, . . . , vn〉 generates a
right hook if (un−i, un−i+1) generates a left hook in Π−1

G = 〈u1 ≡ vn, u2 ≡
vn−1, . . . , u

n−i+1 ≡ vi, . . . , u
n ≡ v1〉.

Definition 6. Let G ∈ Gn and let ΠG a Hamiltonian path of G. G has a hook
if there exists a path edges that generates either a left or a right hook.

Looking at the definition of left hook, it is easy to devise an O(m) time
algorithm that finds all the hooks of a graph G. In the next subsection we will
prove that, if G has k hooks, then Opt(G) ≥ n+k. Moreover, we will prove that
we can remove all hooks from G by creating a new graph and a Hamiltonian
path for it, and without altering the size of MBSS.

vj vi+2 vi+4vi+3
ei+3

Fig. 2. A left hook generated by ei+3

4.3 Graph Decomposition

Let G be a biconnected graph and let V�, C, Vr be a 2-separation. Henceforth,
G� (resp., Gr) will denote the graph obtained from G by shrinking Vr (resp., V�)
into one vertex x� (resp., xr). Notice that G�, Gr are biconnected. Moreover, by
G�,r = (V ′, E′), where V ′ = V� ∪ C ∪ Vr and E′ = {(u, v) ∈ E(G�) ∪ E(Gr) |
u, v ∈ V ′}, we denote the graph built from G� and Gr w.r.t. x�, C, xr. Observe
that G = G�,r.

Lemma 7. If H is a MBSS of G then H�, Hr are MBSS of G�, Gr, respectively.
If H�, Hr are respectively MBSS of G�, Gr, then H�,r is a MBSS of G.

Proof. Suppose H is a MBSS of G, but, w.l.o.g., H� is not a MBSS of G�. Let
H∗

� be a biconnected spanning subgraph of G� and |E(H∗
� )| < |E(H�)|. It is easy

to show that the graph H ′ built from H∗
� and Hr w.r.t. x�, C, xr is biconnected.

As x�, xr have degree 2 in G�, Gr, respectively, it follows that

|E(H ′)| = |E(H∗
� )| − 2 + |E(Hr)| − 2 < |E(H�)| − 2 + |E(Hr)| − 2 = |E(H)|

and so H cannot be a MBSS of G, thus obtaining a contradiction.
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Suppose now that H�, Hr are respectively MBSS of G�, Gr, but H�,r is not a
MBSS of G�,r. Let H be a biconnected spanning subgraph of G with |E(H)| <
|E(H)|. Then, we have

|E(H)| = |E(H�)| − 2 + |E(Hr)| − 2 < |E(H�)| − 2 + |E(Hr)| − 2 = |E(H�,r)|,

from which we deduce

|E(H�)|+ |E(Hr)| < |E(H�)|+ |E(Hr)|.

Since all graphs used in the equation above are biconnected, we can claim that
either H� or Hr is not a MBSS for the respective graph, thus obtaining a con-
tradiction. ��

Let ΠG be a Hamiltonian path of a biconnected graph G. We say that G is
decomposable if there exists a path edge ei with κ(ei) = 2 and the associated
2-separation V�, C, Vr is such that |V�|, |Vr| �= 1. The pair G�, Gr is a decompo-
sition of G. A non decomposable graph is called prime. A prime decomposition
G1, G2, . . . , Gk of a decomposable graph G is the repeated decomposition of
non-prime graphs of a decomposition of G, until Gj is prime, j = 1, 2, . . . , k.

Remark 2. How much does it cost to decompose G w.r.t. the 2-separation
V�, C, Vr? Let δG(v) = δ�(v) + δr(v), where v ∈ C and δ�(v) (resp., δr(v)) is
the number of edges incident to v and to a vertex in V� (resp., Vr). Then de-
composing G into G�, Gr costs O (maxv∈C {min{δ�(v), δr(v)}}) time. Moreover
δG�

(v) = δ�(v) + 1 and δGr (v) = δr(v) + 1, ∀v ∈ C.

Remark 3. If G ∈ Gn is prime, then κ(ei) ≥ 3, 4 ≤ i ≤ n− 4.

We can now prove the following lemma:

Lemma 8. Let G ∈ Gn be a prime graph and let ΠG be a Hamiltonian path of
G. If G has a left hook, then Opt(G) ≥ n + 1.

Proof. First note that a prime graph cannot have more than one left hook.
Indeed, if ei+3 generates a left hook, then {vi+1, vi+4} is a 2-separator. Let v be
the tip of the hook. It is not hard to see that every MBSS of G is such that either
of vi+3, vi+4 or v has degree at least 3, while vi+1 must always have degree at
least 3. The claim follows. ��

The previous lemma naturally extends to right hooks. Looking at its proof,
it is not hard to see that if G has a left hook generated by ei+3 with tip in v,
then we can remove edge (v, vi+4) without altering the size of a MBSS. Note
that this process makes vi+2 become a beta-vertex.

Remark 4. From now on, we will consider biconnected beta-free graphs having
no hooks.
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Looking at Remarks 1 and 3, there is an advantage if the instance of our prob-
lem is a prime graph in Gn. We can try to work with prime graphs if Lemma 7
applies in a nice way. Let us assume that there exists a path edge ei such that
κ(ei) = 2. W.l.o.g. assume that κ�(ei) = 2, and let V�, C = {vj , vi}, Vr be the
associated 2-separation such that v1 ∈ V�. Let G� (resp., Gr) be the graph ob-
tained by shrinking the set Vr (resp., V�) into one vertex x� (resp., xr). The pair
G�, Gr is a decomposition of G. It is easy to see that 〈v1, v2, . . . , vj , . . . , vi, x�〉
is a Hamiltonian path of G�, while 〈vj , xr, vi, vi+1, vi+2, . . . , vn〉 is a Hamilto-
nian path of Gr. Moreover, note that xr has degree 2 in Gr. Thus, by remov-
ing xr from Gr and by adding (vj , vi) to Gr we obtain a new graph G′

r and
〈vj , vi, vi+1, vi+2, . . . , vn〉 is a Hamiltonian path of G′

r. It is easy to see that if
H′

r is a MBSS of G′
r chosen among all biconnected spanning subgraphs of G′

r

having edge (vj , vi), then Lemma 7 still holds. Indeed, the graph obtained from
H′

r minus edge (vj , vi), plus vertex xr and edges (vj , xr), (xr, vi), is a MBSS of
Gr. Moreover, notice that:

Remark 5. If H�, H
′
r are biconnected spanning subgraphs of G�, G

′
r, respectively,

then the graph H built from H� and H ′
r w.r.t. x�, C, xr, is such that |E(H)| =

|E(H�)|+ |E(H ′
r)| − 3.

The pair G�, G
′
r is said to be a simplified decomposition of G. A simplified

prime decomposition G1, G2, . . . , Gk of a decomposable graph G is the repeated
simplified decomposition of non-prime graphs of a simplified decomposition of
G, until Gj is prime, j = 1, . . . , k.

4.4 The Final Algorithm

In this section we improve the algorithms described in Section 3. Before show-
ing the final algorithm, we first describe a linear time and space algorithm for
decomposing a graph G into a collection of prime graphs. We assume that a
Hamiltonian path ΠG of G is given in input. The algorithm begins by making a
copy of G (say G′) and by assuming that G′ is the initial partial decomposition
of G. Then, it decomposes the computed partial decomposition of G until each
graph of the decomposition is prime. The algorithm explores path edges in order
from e1 to en. At a given iteration, let ei be the path edge the algorithm must
examine. Let vh be the right endvertex of fi and let vj+1 be the second right
endvertex (different from h) of some edge in E(ei) ∪ {ei} (say f ′

i) having maxi-
mum index. If vj+1 = vi+1, then κr(ei) = 2 and C = {vi+1, vh} is a 2-separator.
If a graph of the computed partial decomposition of G is decomposable w.r.t. C,
then decompose it and skip to ej = ei+1. Otherwise, κr(et) ≥ 3, t = i, . . . , j − 1,
and the algorithm can directly skip to ej . Moreover, when examining ej , it suf-
fices to explore only cycle edges in E(ej) having the left endvertex with index
greater than i. However, remember that fi could be either fj or f ′

j . The same
algorithm can be easily adapted to compute κ�(ei). About the time and space
complexity, notice that each cycle edge is explored a constant number of times.
Moreover, as the number of vertices of a prime decomposition of G is O(n), then
from Remark 2 it follows that the time and space complexity is O(m).
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Lemma 9. A biconnected beta-free graph G ∈ Gk, with k ≤ 6, is Hamiltonian.

Proof. Since G is biconnected, from Lemma 3 it follows that graphs in G3,G4

are Hamiltonian. Let us assume that G ∈ G6 is not Hamiltonian and let H be
a MBSS of G. In this case there are 2 vertices u1, u2 of H having degree 3.
The graph obtained from H after the removal of u1, u2 has at least 3 connected
components, two of these made by a single vertex v and v′, respectively. Both
v, v′ cannot be adjacent to other vertices different from u1, u2 in G, otherwise
G is Hamiltonian and H is not an optimal solution. So v is a beta-vertex in a
beta-free graph. We have obtained a contradiction. The same technique can be
used to prove that a beta-free graph G ∈ G5 is Hamiltonian. ��

Now we can implement a new more powerful function Expand such that

Lemma 10. For a prime graph G ∈ Gn and a given Hamiltonian path ΠG of G,
if Opt(G) ≥ n + k, then the algorithm BSS computes in O(m) time and space
a solution H such that |E(H)| ≤ n + k +

⌈
n−6

4

⌉
< 5

4Opt(G).

Proof. If n ≤ 6 the claim follows from Lemma 9. Notice that as G is prime and
has no beta-structures, it is not hard to see that we can cover the first (resp.,
last) 4 edges of ΠG by adding only one extra edge. So, looking at Remark 3
it is easy to prove the claim when n ≤ 9. Hence, we can assume that n ≥ 10.
Moreover suppose we have added all edges of ΠG to E(H). So we will remove all
useless path edges and add cycle edges. We prove that we need to add one extra
edge for the first (resp., last) 5 edges of ΠG, and one extra edge every 4 edges
of ΠG(v6, vn) (in an amortized sense). We prove this for the first path edges of
ΠG, since for the last 5 path edges of ΠG the problem is symmetric. Let λ = n
be an initial lower bound for |E(H)|.

We first prove that we add only one extra edge for the first 5 path edges of
ΠG. We must test sequentially the following (mutually exclusive) conditions.

(i) If f1 covers 5 edges of ΠG(v1, vn), then take it. Otherwise, if there are 2
semi-adjacent edges (one of which in E(e1)) covering 5 edges of ΠG(v1, vn),
then take them and remove the middle one.

(ii) As G is prime, then f1 = (v1, v5) is the only cycle edge covering E(e1), and
so it must be added to H. If there is an edge in E(e4) covering the first
edges of ΠG(v5, vn), then take it. Otherwise, if there are 2 semi-adjacent
edges (one of which in E(e4)) covering the first 5 edges of ΠG(v5, vn), then
take them and remove the middle one.

(iii) Add f1 = (v1, v5). In this case E(e5) ⊆ {(v2, vj), (v3, vi) | 6 ≤ i, j ≤ 9}. Note
that e2 cannot generate a right hook (see Remark 4). Now the proof breaks
into mutually exclusive cases that must be tested sequentially:
(a) (v2, v6) ∈ E(e4) (resp., (v3, v6) ∈ E(e4)). Add (v2, v6) (resp., (v3, v6))

plus one cycle edge in E(e5) with endvertex v3 (resp., v2), and remove
e2, e5 (see Figure 3 (a)). In this case we add one extra edge for at least
6 path edges.

(b) (v2, vj), (v3, vj+1) ∈ E(e4) (resp., (v3, vj), (v2, vj+1) ∈ E(e4)). Add both
edges and remove e2, ej (see Figure 3 (b)). In this case we add one extra
edge for at least 7 path edges.
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Fig. 3. Cases (a) and (b)
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Fig. 4. Case (c)

(c) Otherwise, it must be E(e5) ⊆ {(v2, v7), (v2, v9), (v3, v7), (v3, v9)} and
E(e9) ⊆ {(v5, vj), (v7, vi), (v9, vk) | 10 ≤ j, i, k}. Let G′ be the graph
obtained by shrinking the set {v1, v2, v3, v4} (resp., {v10, v11, . . . , vn})
into one vertex x� (resp., xr). Since C = {v5, v7, v9} is a separator and
G is prime, it is not hard to see that G′ is isomorphic to a subgraph
of K(4,K3) (see Figure 4). In this case, add either {(v2, v7), (v3, v9)} or
{(v3, v7), (v2, v9)}, and remove e2. Since from Corollary 1 we can increase
λ by 1, it follows that in this case we add one extra edge for 9 path edges.

Since κ(ei) ≥ 3 for 4 ≤ i ≤ n − 4, from Lemma 1 we have that we are able
to add one cycle edge every 4 path edges. Let λ = n + k ≤ Opt(G) be our final
lower bound. The computed solution H has size

|E(H)| ≤ n− 1 +
(

1 + k +
⌈

n− 1− 5
4

⌉)
= n + k +

⌈
n− 6

4

⌉
<

5
4
(n + k).

Comparing the size of H with Opt(G) the approximation ratio follows. About
the time and space complexity, as each edge is explored a constant number of
times (see also Theorem 2), then the time and space complexity is O(m). ��

We can finally prove the following:

Theorem 3. The algorithm BSS returns a min
{

5
4 , 2κ(G)−1

2(κ(G)−1)

}
-approximated so-

lution for the MBSSHP-problem in O(m) time and space.
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Proof. If κ(G) ≥ 3, the claim follows from Theorem 2. So, assume κ(G) = 2.
Let G1, G2, . . . , Gi be the simplified prime decomposition of G and let ΠGj

be
the given Hamiltonian path of Gj , j = 1, 2, . . . , i. We first find a biconnected
spanning subgraph Hj for each instance Gj , ΠGj . Notice that we can build a
biconnected spanning subgraph H of G from H1, H2, . . . , Hi in O(m) time and
space. Let pj + 1, with j = 1, i, be the length of path ΠGj

, and let pj + 1 + kj

be the lower bound for the size of a MBSS of Gj computed as in Lemma 10.
Moreover, let pj + 2, with j = 2, . . . , i − 1, be the length of path ΠGj

, and let
pj + 2 + kj be the lower bound for the size of a MBSS of Gj computed as in
Lemma 10. Then, let k =

∑i
j=1 kj .

From Lemma 10, from Remark 5 and since n ≥ 1 +
∑i

j=1 pj , we have that

|E(H)|=
∑
j=1,i

(
pj +2 +kj +

⌈
pj − 4

4

⌉)
+

i−1∑
j=2

(
pj + 3+kj +

⌈
pj − 3

4

⌉)
− 3(i− 1)

≤ k + n +
i∑

j=1

⌈
pj − 3

4

⌉
≤ k + n +

1
4

i∑
j=1

pj ≤ 5
4
(n + k),

where the second inequality follows from the fact that, for every integer 1 ≤ h ≤
m, being m = hq + r, where q and r < h are positive integers, then:⌈

m− (h− 1)
h

⌉
=
⌈

hq + (r + 1− h)
h

⌉
≤ q +

⌈
r + 1− h

h

⌉
≤ q ≤ m

h
.

As Lemma 7 and Corollary 1 imply that Opt(G) ≥ n+k, then the approximation
ratio follows. The time and space complexity follows from Lemma 10 and from
the fact we can find a prime decomposition of G in linear time and space. ��
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Abstract. Borodin, Nielsen and Rackoff [5] proposed a framework for
abstracting the main properties of greedy-like algorithms with emphasis
on scheduling problems, and Davis and Impagliazzo [6] extended it so
as to make it applicable to graph optimization problems. In this paper
we propose a related model which places certain reasonable restrictions
on the power of the greedy-like algorithm. Our goal is to define a model
in which it is possible to filter out certain overly powerful algorithms,
while still capturing a very rich class of greedy-like algorithms. We argue
that this approach better motivates the lower-bound proofs and possibly
yields better bounds. To illustrate the techniques involved we apply the
model to the well-known problems of (complete) facility location and
dominating set.

Keywords: Priority algorithms, inapproximability results, facility loca-
tion, dominating set.

1 Introduction

Greedy algorithms have been a widely popular approach in combinatorial opti-
mization and approximation algorithms. This is mainly due to their conceptual
simplicity as well as their amenability to analysis. In fact, one reasonably expects
a greedy algorithm to be one of the first approaches an algorithm designer em-
ploys when facing a specific optimization problem. It would therefore be desirable
to know when such an approach is not likely to yield an efficient approximation.
However, while it is relatively easy to identify a greedy algorithm based on intu-
ition and personal experience, a precise definition of such a class of algorithms
is needed so as to prove limitations on its power. Even more importantly, as
argued in [5] it is expected that a rigorous framework for greedy algorithms can
provide insight on how to develop better, more efficient algorithms.

Despite the popularity and importance of greedy algorithms as an algorithmic
paradigm, it was only recently that a formal framework for their study emerged.
In particular, Borodin, Nielsen and Rackoff introduced in [5] the class of prior-
ity algorithms as a model for abstracting the main properties of deterministic
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greedy-like algorithms (we will hereafter refer to their model as the BNR model).
In addition, Borodin, Nielsen and Rackoff showed how the framework can yield
lower bounds on the approximation ratio achieved by priority algorithms for
a variety of classical scheduling problems. In a follow-up paper, Regev [15] ad-
dressed one of the open questions in [5] related to scheduling in the subset model.
The priority framework was subsequently applied in the context of the facility
location and set cover problems by Angelopoulos and Borodin [2], and it has also
been extended to capture greedy-like algorithms that allow randomization [1].
More recently, Davis and Impagliazzo [6] showed how to modify the BNR model
in order to show limitations on the power of priority algorithms for graph opti-
mization problems. To illustrate the technique, they applied the game to basic
graph problems such as shortest path, metric Steiner tree, independent set and
vertex cover. We refer to their model as the DI model.

In this paper we continue the study of greedy-like algorithms as formulated
by priority algorithms. We first provide some key definitions. According to [5]
priority algorithms are characterized by the following two properties:

1. The algorithm specifies an ordering of “the input items” and each input item
is considered in this order.

2. As each input item is considered, the algorithm must make an “irrevocable
decision” concerning the input input.

As one would expect, a precise definition of “input items” and “irrevocable
decisions” pertains to the specific problem at hand.

Depending on whether the ordering changes throughout the execution of the
algorithm, two classes of priority algorithms can be defined:

– Algorithms in the class Fixed Priority decide the ordering before any
input item is considered and this ordering does not change throughout the
execution of the algorithm.

– Algorithms in the broader class Adaptive Priority are allowed to specify
a new ordering after each input item is processed. The new ordering can thus
depend on input items already considered.

In [5], greedy algorithms are defined as (fixed or adaptive) priority algo-
rithms, which satisfy an additional property: the irrevocable decision is such
that the objective function is locally optimized. More specifically, the objective
function must be optimized as if the the input currently being considered is
the last input. Note that in this context not every greedy-like (that is, priority)
algorithm is greedy.

In both the work of Borodin et al and Davis and Impagliazzo, in order to
show a lower bound on the approximation ratio one evaluates the performance
of every priority algorithm for an appropriately constructed nemesis input. The
construction of such a nemesis input can be seen as a game between an adversary
and the algorithm. In both games, the adversary presents initially a (large) set of
potential input items, and in each round removes certain input items according
to the corresponding decisions made by the algorithm.



Order-Preserving Transformations and Greedy-Like Algorithms 199

654

321

Fig. 1. An input for a graph problem

As noted in [5] it is expected that the study of priority algorithms will pro-
vide insights about how to develop better, more efficient greedy-like algorithms.
To this end, it is essential that the adversary involved in the lower-bound ar-
guments is “reasonably” powerful, or, from a different scope, that the priority
algorithm does not have “unreasonable” power. Otherwise, it is expected that i)
the arguments behind the lower bound proofs will be very elaborate (something
which becomes even more critical in the context of graph problems, where the
input items refer to each other) and it will be hard to get reasonably good lower
bounds; and most importantly ii) the lower bounds will not necessarily reflect
the limitations of “real” greedy-like algorithms, but rather those of artificial
algorithms which use information that is conceptually difficult to generalize.

To illustrate the argument above, consider the graph shown in Figure 1,
and suppose it is used as input to a Fixed Priority algorithm for a certain
unweighted graph optimization problem. In the DI model it is possible that
the algorithm specifies the ordering 1,5,4,2,3,6 from highest to lowest priority.
Note that in this ordering a vertex of degree one (namely vertex 3) receives
both higher and lower priority than vertices of degree two (namely vertices 6
and 2, respectively). In other words, the algorithm has somehow the power to
differentiate between two input items of the same degree such as vertices 6 and
2. However, it is very counterintuitive to think of a Fixed Priority algorithm
which can make such an unnatural distinction of seemingly identical input items.

In this paper we put forward a formal model which intends to capture the
above observation, namely that the priority algorithm normally should give equal
priority to input items which “look alike” (which is not necessarily the case in
the DI and BNR models). We propose an adversary which applies to priority
algorithms that are not necessarily as powerful as the algorithms assumed by the
DI model, while still being able to capture a very wide class of natural greedy-
like algorithms for graph problems. In a nutshell, we do not allow algorithms
to acquire useful information from the id’s of the input items (vertices). Inter-
estingly, the proposed adversary does not remove input items, but instead can
apply a more wide range of transformations over the potential input items. In
particular, we allow transformations that do not affect the ordering in which
the algorithm considers the input items, in the presence of an adversary. We
believe this model reflects the fact that local information does not necessarily
yield knowledge of the global structure of an instance, which is only self-evident
in greedy-like algorithms.

To demonstrate our techniques, we apply our model to the complete metric
facility location and dominating set problems. The former is a variant of the
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classic metric facility location problem in which every node is both a facility
and a city (unlike the disjoint variant in which facilities and cities form disjoint
sets); the latter can be seen as a variant of the set cover problem, where now each
vertex can both cover and “be covered by” other vertices. We focus on these two
graph optimization problems for two reasons: i) their corresponding variants,
namely disjoint facility location and set cover have already been studied in [2]
from the point of view of approximability by priority algorithms using the BNR
game; ii) the lower bounds of [2] do not carry over to the problems we consider,
since the input items are no longer “isolated”, but refer to each other.

How do our results compare to the work of Davis and Impagliazzo? It is not
clear to us whether the bounds as stated in Theorems 2 and 3 can be reproduced
using the DI adversary. Similarly, we do not know whether Theorem 5 can be
shown within the DI framework, but we believe that if so it would require a
more elaborate proof. Theorems 1 and 4 can definitely be reproduced by the
DI adversary. We nevertheless include them since not only they illustrate our
transformations, but they are also interesting on their own (Theorem 1 uses an
instance where the facilities have non-uniform opening costs).

We emphasize that as in deterministic priority algorithms (and similar to
competitive analysis of online algorithms) the lower bounds are derived by ex-
ploiting the syntactic structure of the algorithms, and are orthogonal to any
complexity considerations. In other words, we allow the algorithm unbounded
time complexity.

Very recently and independently to this work, Borodin, Boyar and Larsen [4]
addressed further the topic of priority algorithms for graph optimization prob-
lems. Their focus is primarily on the effect of memory on priority algorithms
as defined in [5] and [6]; in particular they considered a model in which memo-
ryless algorithms do not accept an input item once some other input item was
rejected in a previous iteration (which they call the “acceptances-first” model)
and presented lower bounds for problems such as vertex cover, independent set
and vertex coloring. In addition, they showed that the “vertex-adjacency” model
of representing input items (also assumed in our work) is more general than the
“edge-adjacency” model. Finally, they proposed a formal definition of “greedi-
ness” in the context of graph problems; however, it is not clear whether their
definition can lead to lower bounds for the class of ”greedy” priority algorithms.
The contributions of our paper are orthogonal to the work of Borodin, Boyar
and Larsen even though the two papers address a similar topic.

2 The Model

2.1 Preliminaries

Input representation. An instance of a graph optimization problem Π can be
described as an (undirected) graph G = (V, E), with vertex and edge weights.
A reasonable representation of an input item for Π is a pair 〈dv, wv〉 where
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v ∈ V . Here, wv is the weight vector1 of v, and dv is the distance vector of v. The
weight vector represents the weight assignments for vertex v (e.g., the cost that
is payed if v is included in the solution), while the distance vector is the vector
of distances (edge weights) from v to every other vertex in V . In addition, each
input item has a unique id. In what follows we use the notation 〈v〉 to denote
the input item that corresponds to vertex v, although in some cases we will
not make the distinction when it is clear from the context. Note that every
time the priority algorithm considers an input item 〈v〉, all the information for
〈v〉 becomes available to the algorithm (including the id’s of the neighbouring
vertices in its distance vector).

Priority functions. As in [6] we will assume that the priority algorithm uses
a priority function to assign real-valued priorities to the input items. Thus,
in each iteration, the input item with the highest priority is the one that the
priority function maps to the highest value among all remaining input items. To
make the definition more precise, we must distinguish between the two classes
of priority algorithms. Let 〈V 〉 denote the infinite set of input items of the
form described earlier. For Fixed Priority algorithms, the priority function is
P : 〈V 〉 → R, that is, the priority of an input item is determined solely by the
input item itself. In contrast, in iteration k, an Adaptive Priority algorithm
will take into consideration the history of the algorithm’s execution, namely
the set Hk−1 = 〈v1〉, 〈v2〉, . . . , 〈vk−1〉 of input items considered in iterations 1
through k − 1. Hence for Adaptive Priority algorithms we can describe the
priority function at iteration k as Pk : 〈V 〉 ×Hk−1 → R.

We will assume that in the event two input items have the same highest
priority, the algorithm cannot distinguish them. Equivalently, we will assume an
adversary that dictates which input item should be considered next, in the event
of a tie.

We also need to impose some natural, realistic restrictions on the capacity
of the algorithm to assign priorities and differentiate between input items. Let
us first introduce some notation. For a distance vector dv denote by M(dv) the
distance multiset of v, namely the multiset of all distances from v to every other
vertex in G. Also, for a given set S ⊆ V , denote by dv(S) the vector of distances
d(v, u), for all u ∈ S.

Consider first algorithms in the class Fixed Priority. Let 〈v〉, 〈u〉 be two
input items. The priority function P must obey the following rule:

FP Rule: P (〈v〉) = P (〈u〉) if M(dv) = M(du) and wv = wu. (∗)

The interpretation of the above rule is that id’s do not carry information. In
this view the distance vectors degenerate to distance multisets, and thus two

1 In general, the weight vector can represent more than one weights, according to the
specific problem at hand. E.g., for the weighted complete facility location problem,
each weight vector will store the weight of the facility as well as its opening cost.
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input items with the same distance multisets and the same weight vectors will
be indistinguishable to the algorithm.

A similar assumption will be made for Adaptive Priority algorithms; in
this case, however, we must take into account the history. More specifically, let
〈v〉, 〈u〉 be two input items not in Hk−1. Also, let π : V \ Hk−1 ∪ {u} ∪ {v} →
V \ Hk−1 ∪ {u} ∪ {v} be a permutation of vertices in V \ Hk−1 ∪ {u} ∪ {v}.
Then Pk must observe the following rule:

AP Rule: Pk(〈v〉, Hk−1) = Pk(〈u〉, Hk−1) if

– dv(Hk−1) = du(Hk−1) and wu = wv,
– There exists a permutation π such that for every x ∈ V \ Hk−1 ∪{u}∪ {v},

d(u, x) = d(v, π(x)), dx(Hk−1) = dπ(x)(Hk−1) and w(x) = w(π(x)). (∗∗)

The first constraint is related to the fact that the algorithm knows the distance
vectors of all vertices in Hk−1. It implies that the history by itself is not sufficient
to distinguish u from v. The second constraint is related to vertices not yet
considered, and likewise signifies that such vertices cannot help in distinguishing
u from v, assuming that id’s do not carry information.

We conclude this section by mentioning that every time the priority algorithm
considers an input item 〈v〉 it has to make an irrevocable decision concerning
the input item. In several graph problems, the decision is whether to include the
input item in the partial solution (we then say that the algorithm accepts the
input item).

2.2 Order-Preserving Transformations

Similar to [5] and [6], in order to establish a lower bound on the approximability
of a graph problem by a deterministic priority algorithm, we will use the concept
of a game between the algorithm and an adversary. The game evolves in rounds,
with each round corresponding to an iteration of the algorithm as described
below (we focus on the more general case of Adaptive Priority algorithms).

The adversary presents, in the beginning of the first round of the game, a
graph G1 = (V1, E1). Denote by v1

1 , v1
2 , . . . , v1

n, the input items for G1, with the
superscript “1” identifying the round of the game, and subscripts denoting the
labels of vertices 2. The algorithm considers the input item of highest priority, say
v1
1 , and makes an irrevocable decision concerning it. More generally, suppose that

by the end of the k-th round the algorithm has considered the input items with
labels 1, . . . , k. At the end of the k-th round, the adversary applies a transforma-
tion φk : 〈V 〉 → 〈V 〉. This transformation maps an input item 〈vk

i 〉 = 〈dvk
i
, wvk

i
〉

2 We distinguish between “labels” and “id’s” intentionly, since the adversary is al-
lowed to permute id’s, as will become clear later. We need some invariant piece of
information to refer to the input items in the order they are considered in the game,
and the labels serve precisely this purpose.



Order-Preserving Transformations and Greedy-Like Algorithms 203

to an input item 〈vk+1
i 〉 = 〈d′

vk+1
i

, w′
vk+1

i

〉; in other words, the distance and weight
vectors of the item may change. We emphasize that the transformation applies
only to input items with labels k + 1, . . . , n, i.e., the adversary cannot modify
items considered in previous rounds. This gives rise to a new graph Gk+1, which
can be uniquely described by the input items vk+1

1 , vk+1
2 , . . . , vk+1

n , for which
vk+1

i ≡ vk
i , for all i ≤ k. The game proceeds until the last round, namely round

n. At that point the algorithm has considered all input items in the graph.
As one might expect, only limited types of transformations can be helpful for

our purposes. We call φk an order-preserving transformation, if and only if for
every j ≤ k, and i ≥ k + 1,

Pj(vk+1
i , Hj−1) ≤ Pj(v

j
j , Hj−1) (1)

where Hj−1 is the history at the end of round j−1 of the game, namely Hj−1 =
{vl

l | l ≤ j − 1}.
Informally, the definition suggests that as vk

i is “replaced” by vk+1
i , the or-

dering of input items (in terms of their labels) considered by the algorithm up
to round k will not be affected.

The following lemma3 formalizes the use of the adversary/algorithm game as
a tool for bounding the approximation ratio:

Lemma 1. Suppose that the graph defined by the input items vn
1 , . . . vn

n (as de-
termined by the game between the adversary and the algorithm) is given as input
to the algorithm. Then on this specific input, and in iteration i, the algorithm
will consider input item vn

i . In other words, the algorithm will consider input
items in the order of their labels.

The following transformations are implied in our model, but we emphasize
them since they are of particular importance. First, if σ is the ordering of a set
of input items, as produced by a Fixed Priority algorithm, then the adversary
can swap the positions in σ of two input items which have the same priority.
Second, suppose that G1 and G2 are two isomorphic graphs, in the sense that
there exists a permutation of the id’s of vertices in G1 which produces G2.
Suppose that on input G1 the algorithm assigns label i to the vertex it considers
in the i-th iteration. Then on input G2, the algorithm will consider in the i-th
iteration the vertex with label i, and will make the same decision as the decision
made by the algorithm on input G1 and in the i-th iteration.

2.3 What Is a “Greedy” Algorithm for a Graph Problem?

In the context of graph problems, a definition for greediness that treats the cur-
rent input item as if it were the last one becomes problematic. First, note that
throughout its execution the algorithm acquires local information which reveals

3 In this preliminary version we omit certain proofs due to space restrictions. Full
proofs will be provided in the journal version of the paper.
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only part of the input graph. Hence, it is difficult to think of a specific input item
as being the last one when the partial information suggests that there definitely
exist input items that should follow. Second, and more importantly, it is not
easy to identify a unique “locally optimal” decision at each iteration, precisely
because the partial information does not represent a valid graph instance (some
distances and weights have not yet been revealed to the algorithm). For the
above reasons we will employ only intuitive and in a sense ad-hoc definitions of
greedy (as opposed to greedy-like) algorithms which are specific to the prob-
lems we consider. The definitions which we propose are still broad enough to
capture known algorithms, and provide some flavour of what a “locally optimal”
decision is meant to be. We insist on providing some meaningful definitions not
only because of the historical interest in this concept, but mainly because the
concept itself is widely used in practice. As one would expect, it is possible to
show much better lower bounds for greedy priority algorithms (for instance the
bounds of Theorem 3 and Theorem 5 are tight for the corresponding classes
of algorithms). In such cases, the bounds suggest some directions towards the
design of better algorithms: namely, that in order to improve the approximation
ratio it is essential that the algorithm is not greedy.

We first provide a definition of what we consider to be a greedy priority
algorithm for complete facility location. Let vi be the node considered by the al-
gorithm at iteration i. We capture the greedy behaviour of the algorithm (which
one would informally describe by the motto “live for today”), by requiring that
it always opens vi if this results in lowering the cost of the “current
solution”. Of course, we must clearly define the intuitive term “current solu-
tion”. Note that the algorithm has only limited information (i.e., what can be
deduced by the triangle inequality) about the distance d(u, v) of every two nodes
u, v which have not been considered yet (prior to iteration i), as well as the fa-
cility cost of such nodes. The current solution is then the optimal solution with
the constraint that the algorithm cannot open a yet unconsidered node (which
implies that every unconsidered node has to be connected to a node which was
opened by iteration i), and cannot revoke the decision about nodes which were
considered before the current iteration (i.e., cannot open a facility it did not open
in a previous iteration, and cannot close a facility that it opened in a previous
iteration).

For dominating set, we propose the following definition of a greedy priority
algorithm. Let v be the vertex considered in the current iteration. Then v will
be accepted if it is adjacent to at least two vertices which have not been
considered yet and which are not dominated by vertices accepted thus
far. We emphasize that in the case where the above condition does not hold the
algorithm may or may not open v; in other words no restrictions are placed on the
algorithm in situations other than the one we described earlier. This is important
since we do not want a definition that forces the algorithm to open a large
number of vertices, because the lower bounds then become artificial. For instance,
consider the situation where v is adjacent to only one yet unconsidered and
undominated vertex u, and furthermore v is adjacent to no other undominated
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vertices. Then it would make sense for the algorithm to reject v, wait until u is
considered in a subsequent iteration, and then accept u; this would not increase
the total cost of the algorithm.

3 Applications: Complete Facility Location and
Dominating Set

Problem definitions. In the (uncapacitated, unweighted) facility location prob-
lem, the input consists of a set F of facilities and a set C of cities. The set
N = F ∪ C corresponds to the set of nodes in the graph, i.e., a node can be
either a facility or a city, or both. Each facility i ∈ F is associated with an
opening cost fi which reflects the cost that must be paid to utilize the facility.
Furthermore, for every facility i ∈ F and city j ∈ C, the non-negative distance
or connection cost cij is the cost that must be paid to connect city j to facility
i. In the version of the problem that is known as the complete facility location
problem, we have F = C = N , i.e., every node is both a facility and a city. The
objective is to open the facilities at a subset of the nodes and connect every other
node to some open facility so that the total cost incurred, namely the sum of
the cost of open facilities and the total connection cost is minimized4. We shall
focus exclusively on the metric version of the problem, in which the connection
costs satisfy the triangle inequality.

Observe that from the point of view of algorithms (upper bounds), the dis-
joint version (namely the version in which F ∩ C = ∅) subsumes the complete
version. This is because we can always “split” a node in the complete version
of the problem to a corresponding facility and a corresponding city at zero dis-
tance from each other. However, we emphasize that the lower bounds for priority
algorithms for the disjoint version (see [2]) do not carry over to the complete
version.

In the dominating set problem, the input is an undirected, unweighted graph
G = (V, E). We seek a set V ′ ⊆ V of smallest cardinality such that every vertex
u ∈ V \ V ′ is adjacent to at least one vertex in V ′.

3.1 Complete (Metric) Facility Location

The first constant-factor polynomial-time approximation algorithm for (metric)
facility location was given by Shmoys, Tardos and Aardal [16]. Interestingly, the
best-known approximation ratio (1.52) is due to Mahdian, Ye and Zhang [13],
and is achieved by a priority algorithm. Other algorithms that follow the prior-
ity framework include the Adaptive Priority greedy algorithm of Mahdian,
Markakis, Saberi and Vazirani [12], which is a 1.861-approximation algorithms,
and the Adaptive Priority algorithm of Jain, Mahdian and Saberi [9]. On
the other hand, Mettu and Plaxton [14] showed that an algorithm which be-
longs in the class Fixed Priority greedy yields a 3-approximation for the

4 We say that a node is opened, when the facility on the said node is opened.
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Fig. 2. The graphs G1 and G2 for the proof of Theorem 1. The edges shown indicate
edges of distance 1, while all other distances are equal to 2

problem. It should be mentioned that their algorithm is in fact a re-statement
of a primal-dual algorithm due to Jain and Vazirani [10].

On the negative side, Guha and Khuller [8] have shown that the disjoint fa-
cility location problem is not approximable within a factor better than 1.463,
unless NP ⊆ DTIME(nO(log log n)). They also showed, that under the same
complexity assumption complete facility location is not approximable within a
factor better than 1.278. Negative results for facility location priority algorithms
in the disjoint model were given by Angelopoulos and Borodin in [2]. In particu-
lar, they showed lower bounds of 4/3 and 1.463 for general Adaptive Priority
algorithms and memoryless Adaptive Priority algorithms respectively, as well
as a lower bound of 3-ε for Fixed Prioritygreedy algorithms.

In the lower-bound constructions shown in this Section we say that a node v
covers a set U ⊂ N of nodes if and only if the distance from v to every node in
U is equal to 1. The vertices of the graphs in our constructions will correspond
to the nodes of the facility location instance.

Theorem 1. No Adaptive Priority (not necessarily greedy) algorithm is bet-
ter than an α-approximation, where α is a constant slightly greater than 36/35.

Proof. We will use instances that consist of 10 nodes. Every node will cover
either 2 or 4 facilities, and its facility cost will be denoted by f2 and f4, for
the two cases, respectively. Here, f2 and f4 are suitably chosen constants (in
particular, the 36/35 bound is obtained for (f2, f4) = (3, 4.5)).

Initially the adversary presents graph G1, shown in Figure 2. We consider
the following cases:
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Case 1: The algorithm gives highest priority to an f2 node, which the adversary
specifies to be v1, and the algorithm does not open it. In this case the input to
the algorithm is G1 itself (no transformation takes place).

Case 2: The algorithm gives highest priority to an f2 node, (again, assume
it to be v1) which it opens. The adversary will perform an order-preserving
transformation to derive graph G2 also shown in Figure 2.

The remaining two cases, namely when the algorithm considers first a f4
node, and either opens it or does not open it, are symmetric to Cases (1) and
(2). In particular, in the case where the algorithm opens the f4 node, the input
to the algorithm will be graph G1, while in the event it does not open it, the
input is graph G2. To complete the proof, it suffices to optimize with respect to
f2 and f4. �

Using ideas similar to Theorem 1, we can show the following:

Theorem 2. There exists β > α, where α is the lower bound of Theorem 1
such that no Fixed Priority (but not necessarily greedy) algorithm achieves
an approximation ratio better than β. In particular, β is slightly greater than
34/33.

The lower bound we show in the following theorem matches the upper bound
of Jain and Vazirani [10] and Mettu and Plaxton [14] (which it is easy to show
that they belong in the class Fixed Priority greedy ).

Theorem 3. No Fixed Priority greedy algorithm has an approximation ratio
better than 3− ε for arbitrarily small ε.

Proof. The adversary presents to the algorithm a graph G = (V, E), with V =
{v1, v2, . . . vk, u1, u2, . . . ul} and l = c+d(k−1). Here, c and d are large constants,
such that c >> d2 (and whose importance will become evident later). Note that
the total number of nodes in the graph is n = k + c+d(k−1) = k(d+1)+ c−d;
that is, n is a linear function of k. Each vi, with i ∈ [k] is at distance 1 from
nodes ud(i−1)+1 . . . , uc+d(i−1), and has a facility cost equal to 2d − ε′, where ε′

is infinitesimally small. The distance between any two nodes vi, vj as well as
the distance between any two nodes ui, uj is equal to 2. Every other distance
is equal to 3. The facility cost of every ui node is infinite (arbitrarily large).
Figure 3 illustrates G for k = 5, d = 2, c = 4, with edges denoting distances
equal to 1.

Lemma 2. cost(OPT ) ≤ (2d2/c + d + 3)k + O(1) and cost(ALG) ≥ k(3d− ε′)
for arbitrarily small ε′.

The lower bound on the approximation ratio follows directly from Lemma 2.
As k grows to infinity, and for large constants c, d, with c >> d2, it is easy to
verify that cost(ALG)/cost(OPT ) ≥ 3− ε, for arbitrarily small ε. �

For completeness we mention that a simple argument can be used to show the
following theorem.

Theorem 4. No Adaptive Priority greedy algorithm is better than a 10/9-
approximation.
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Fig. 3. Input for the proof of Theorem 3, for the case k = 5, c = 4, d = 2. The edges
shown correspond to edges of distance 1 only

3.2 Dominating Set

Dominating set is known to be equivalent to Set Cover under L-reductions [3].
This result implies that dominating set is not approximable within a factor
better than (1 − ε) lnn unless NP ⊆ DTIME(nO(log log n)), by a result due
to Feige [7]. Here, n is the number of vertices in the graph. The well known
greedy algorithm for set cover [11] can in fact be applied to yield a Θ(log(n))-
approximation priority algorithm for dominating set, which is also greedy (as
defined in Section 2.3, since the algorithm will always accept vertices as long
as undominated vertices remain). Note that in [2] it was shown that no priority
algorithm for set cover is better than lnn− o(lnn)-approximation, however the
result does not carry over to dominating set.

Theorem 5. Every Adaptive Priority greedy algorithm has approximation
ratio Ω(log n) where n is the number of vertices in the graph.

Proof. The adversary presents the graph G, defined as follows. There is a set
V of k = 2m triangles (3-cliques) of vertices v1

l , v2
l , v3

l , with l ∈ {0, . . . , k − 1},
for some integer m. We call triangle {v1

l , v2
l , v3

l } triangle l, and we say that a
vertex is adjacent to triangle l if and only if it is adjacent to all three vertices of
triangle l. In addition, there is a set U of m+1 = log k +1 vertices u1, . . . , um+1
with the following property: vertex uj , with j ∈ [m] is adjacent to all triangles
i for which the binary representation of i has the j-th most significant bit equal
to 0. Vertex vm+1, on the other hand, is adjacent to all triangles whose least
significant bit is equal to 1. We call vertices ui,uj ∈ U complementary if and
only if every triangle is adjacent to one of ui,uj . Note that um and um+1 are the
only complementary vertices in G. Figure 4 illustrates G for the case m = 3 (for
the sake of clarity we substituted the triangles by filled-in nodes). We remind
the reader that the ui’s and vj ’s play the role of the id’s. Note that the total
number of vertices in G is Θ(k). Then OPT has a cost of at most 3, since it
suffices to accept vertices um, um+1, v

1
0 in order to dominate every vertex in G.

Consider the class A of priority algorithms with the following statement. On
input G, every algorithm A ∈ A works in rounds, with a round consisting of
several iterations. In particular, in the beginning of round j, A considers and
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Fig. 4. The graph G for the proof of Theorem 5. Each filled-in node j corresponds to
a triangle, and an edge between a vertex ui and a triangle j indicates that all three
vertices v1

j , v2
j , v3

j that comprise triangle j are adjacent to ui

accepts a vertex in U . In subsequent iterations during round j, A considers (and
possibly accepts) certain vertices in V , all of which are dominated by the set of
vertices in U which were accepted by A in rounds 1, . . . , j. Round j ends (and
round j + 1 begins) when A considers and accepts a new vertex in U .

We shall focus on A since it is easier to lower-bound the cost of algorithms
in this class. First, we show that the cost of every greedy priority algorithm is
lower-bounded (within a factor of 1/2) by the cost of some algorithm in A.

Lemma 3. Let A′ be a greedy priority algorithm. Then there is an algorithm
A ∈ A such that on input G cost(A′) ≥ (1/2) · cost(A).

It now suffices to prove the following lemma. Interestingly, we will show that
permuting the id’s of the vertices is sufficient for the adversary to force a loga-
rithmic bound on the approximation ratio.

Lemma 4. Let A be an algorithm in class A. For every j ≤ m there exists a
graph Gj isomorphic to G such that on input Gj the adversary can force A to
consider and accept j vertices in U no two of which are complementary in the
first j rounds of A.

The theorem follows from Lemma 3 and Lemma 4, and the observation that
on input G (or any graph isomorphic to G) no algorithm in A is correct unless
it accepts a pair of complementary vertices. �
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Abstract. Given a network together with a set of connection requests,
call admission control is the problem of deciding which calls to accept
and which ones to reject in order to maximize the total profit of the
accepted requests. We consider call admission control problems with ad-
vance reservations in star networks. For the most general variant we
present a constant-factor approximation algorithm resolving an open
problem due to Erlebach. Our method is randomized and achieves an
approximation ratio of 1/18. It can be generalized to accommodate call
alternatives, in which case the approximation ratio is 1/24. We show
how our method can be derandomized. In addition we prove that call
admission control in star networks is APX -hard even for very restricted
variants of the problem.

1 Introduction

Call admission control (CAC) is a fundamental problem in the operation of
communication networks. In its general form each connection request (call) has a
certain bandwidth requirement and some time specification given by its starting
time and its duration. If the network establishes a call, it first decides on a path
from the sender to the receiver through which the call is being routed. Then it
allocates the requested amount of bandwidth on all links along that path during
the time period in which the call is active. In addition, each call is associated
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with some profit, which is gained by the network provider only if the desired
connection is established. CAC is the problem of deciding which calls to accept
and which to reject with the goal of maximizing the total profit accrued by the
accepted requests.

In this paper we consider CAC problems in star networks with advance reser-
vations. In star networks there is always a unique path for each sender–receiver
pair, and the routing issue mentioned above is trivial. Advance reservation means
that resources are requested in advance of when they are really needed. In this
setting the decision of acceptance or rejection of calls does not have to be made
on-line, i.e., immediately when a new call arrives, but can be made off-line. The
network can collect incoming requests over some period of time and then decide
for the set of collected calls which of them to accept and which to reject. Ad-
vance reservations are therefore helpful for the network in optimizing its CAC
decisions.

We also deal with call alternatives. In this scenario the user can specify several
alternative requests for a connection to be established. The network can either
accept exactly one of the call alternatives, or reject a call completely by rejecting
all its alternatives. By specifying several alternatives the user can increase the
chances that the network accepts the call.

Problem Definition. A star network consists of a set of outer nodes, each of
which is connected exclusively to a unique center node. It is modeled by a simple,
undirected graph G = (V, E), whose vertex set V = {0, 1, . . . , n} represents the
nodes of the network with vertex 0 being the center node. The edge set E consists
of the edges ei = {i, 0} for i = 1, . . . , n corresponding to the links in the star
network that connect an outer vertex i to the center node 0. The capacities of
the links are given as a capacity function c : E �→ R+ that maps each edge e ∈ E
to a positive capacity c(e).

A connection request or call i is specified by a tuple (ui, vi, ti, di, bi, pi) con-
sisting of a source node ui ∈ V , a destination node vi ∈ V , a starting time
ti ∈ N, a duration di ∈ N, a positive bandwidth requirement bi ∈ R+, and a
profit pi ∈ R. For a set R of connection requests, a solution is a subset Q ⊆ R
of accepted calls. It is feasible if the sum of bandwidth requirements of simul-
taneously active calls using the same edge does not exceed the capacity of that
edge:

∀e ∈ E : ∀t ∈ N :
∑

i∈Q(e,t)

bi ≤ c(e),

where Q(e, t) is the set of accepted calls that use the edge e at time t. Our goal
is to compute a feasible solution that maximizes the sum

∑
i∈Q pi of profits of

the accepted calls. We refer to this problem as the general call admission control
problem in star networks, or GCA in stars for short.

GCA in stars is an NP-hard problem. If we drop the time specifications of
the calls and restrict the network to consist of a single edge only, it is equivalent
to the Knapsack problem, which is known to be NP-hard [12]. Therefore,
we are interested in finding good approximate solutions. A feasible solution for
GCA is called a ρ-approximation, ρ ≤ 1, if its total profit is at least a ρ-fraction
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of the profit of an optimal solution. An algorithm is called a ρ-approximation
algorithm if it runs in polynomial time and always outputs a ρ-approximation.
The parameter ρ is called the approximation ratio of such an algorithm.

Motivation. A lot of work on CAC considered the scenario that a connection
request is presented to the network only at the time when the connection should
be established. This model ignores the possibility that resources might be re-
quested ahead of time when they are needed. A natural concept to incorporate
this possibility is advance reservation [13, 18], which is attractive for both the
network provider and the users. The network provider has the advantage of a
higher flexibility and can use better algorithms to maximize the profit gained
from the accepted calls. The user benefits from a guaranteed quality of service
(QoS) once his/her call is accepted.

If we omit the time specification of the calls, GCA contains the maximum
edge-disjoint paths (MEDP) problem as a special case (see [16] for more on this
problem). Since already the MEDP problem is hard to approximate in general
directed graphs [14], it is natural to restrict the network topology to simpler
classes. In this paper we restrict ourselves to star networks. Although star net-
works are a very restricted class of networks, we note that with the results we
present in this paper, star networks are now the most general class of networks
for which a constant-factor approximation algorithm for GCA is known; even
for line networks, i.e., networks consisting of a single path, the existence of a
constant-factor approximation algorithm is an open problem (GCA in lines in-
cludes the maximum independent set problem in rectangle intersection graphs
as a special case; see [5] for the best known approximation results for the latter
problem).

Interestingly, CAC algorithms for star networks apply to general networks if
the provider has rented the capacity of his/her network from another provider
according to the hose model of bandwidth reservations. In the hose model [9],
one requests a logical network connecting a set of terminal nodes and specifies for
each terminal node the maximum rates at which traffic will ever be transmitted
or received by that node. The provider has to reserve sufficient capacity for the
logical network to ensure that any traffic matrix consistent with the specifications
can be accommodated. Therefore, with respect to the available bandwidth, the
logical network behaves like a star network with the terminal nodes as outer
nodes. Thus, if a provider of a video-on-demand system, say, has rented capacity
for the distribution network according to the hose model, the handling of advance
reservations for video transmissions leads naturally to the problem of GCA in
star networks.

It is an important task to investigate CAC problems with arbitrary capacities
on the links of the network. For line networks, for example, there is a constant-
factor approximation algorithm in the case of uniform capacities on the edges
and no time specifications for the calls [3]. However, if we allow arbitrary edge ca-
pacities and assume no restrictions on the bandwidth requirements, no constant-
factor approximation algorithm is known so far. Constant-factor approximations
for this problem are known only under the “no-bottleneck” assumption, which
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requires that the maximum bandwidth requirement is not larger than the mini-
mum edge capacity [7, 8].

Similarly, for star networks there is a constant-factor approximation algo-
rithm for GCA with unit edge capacities, and only a logarithmic approximation
for the case of arbitrary edge capacities. These algorithms were presented in a
paper of Erlebach [11], who raised the open question whether there is a constant-
factor approximation algorithm for GCA in stars.

Our Results. We resolve this open question by presenting the first constant-
factor approximation algorithm for GCA in star networks. Our method is ran-
domized and achieves an approximation ratio of 1/18. It is fast, because it does
not involve linear programming. Instead, our algorithm is based on the local
ratio technique of [3] and can easily be derandomized. We can also modify our
algorithm to handle call alternatives and obtain a 1/24-approximation algorithm
for this case. On the other hand, we prove that GCA in stars is APX -hard even
for very restricted versions of the problem.

Related Work. Many authors have investigated CAC problems for various
network topologies in the on-line and off-line setting. In the on-line scenario
each request must be accepted or rejected immediately without knowing the
future events. We refer to [17, 6] for surveys about on-line CAC algorithms.

GCA for various network topologies is studied in a paper by Erlebach [11].
For trees and trees of rings with unit edge capacities he presents constant-factor
approximation algorithms for CAC without time specifications for the calls. For
star networks he obtains a 1/10-approximation algorithm both for GCA with-
out time specifications and for GCA with unit edge capacities. For GCA in
stars with arbitrary edge capacities he achieves a 1/O(log R)-approximation al-
gorithm, where R is the ratio of the maximum edge capacity to the minimum
edge capacity. All these algorithms are obtained by first solving a linear pro-
gramming relaxation and then decomposing the optimal fractional solution into
a convex combination of integral solutions. The output of the algorithm is the
best of the integral solutions obtained this way.

Bar-Noy et al. [3] extend the so-called local ratio technique [4] to resource
allocation and scheduling problems. They obtain a 1

5 -approximation algorithm
for GCA on a single link. Their approach is also used by Lewin-Eytan et al. [18]
to obtain results for lines, rings, and trees. For trees with unit edge capaci-
ties, they present a 1

5 -approximation for GCA without time specifications and
a 1/O(log m)-approximation algorithm for GCA, where m is the number of re-
quests.

2 Preliminaries: The Local Ratio Technique

Our approximation algorithm is based on the local ratio technique, which was
developed by Bar-Yehuda and Even [4] and first used in our context by Bar-
Noy et al. [3]. The general framework can be described as follows. Assume that
we are given a profit vector p ∈ Rn and a set F of feasibility constraints on
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vectors x ∈ Rn. A vector x ∈ Rn is a feasible solution for the problem (F ,p)
if it satisfies all the constraints in F . The value of a feasible solution x is the
inner product p · x. For a maximization problem, a feasible solution x is an r-
approximation if p ·x ≥ r ·p ·x∗, where x∗ is an optimal solution, i.e., a solution
whose value is maximal among all feasible solutions. The power of the technique
is based on the following theorem.

Theorem 1. (Local Ratio [4, 3]) Let F be a set of constraints and let p, p′ and
p′′ be profit vectors such that p = p′ +p′′. Then, if x is an r-approximation with
respect to (F ,p′) and with respect to (F ,p′′), then x is an r-approximation with
respect to (F ,p).

For computing approximate solutions we will use the so-called unified algorithm
proposed in [3]. We generalize our problem by allowing negative profits as well.

The Unified Algorithm:

1. Delete all calls with non-positive profit.
2. If no calls remain, return Q = ∅.
3. Otherwise, select a call i and decompose p = p′ + p′′. The choice of i and

the decomposition depends on the problem at hand. For the GCA problem,
we will always select i as a call with minimum end-time ti +di, breaking ties
arbitrarily.

4. Solve the problem recursively using p′′ as the profit vector. Let Q′′ be the
set returned.

5. If Q′′ ∪ {i} is a feasible solution, return Q = Q′′ ∪ {i}. Otherwise, return
Q = Q′′.

The decomposition of p into p′ and p′′ in step 3 will be specified separately for
each problem to which we apply the algorithm.

We call a feasible solution i-maximal if it either contains the call i, or it does
not contain the call i, but adding i to the solution will render it infeasible. The
following lemma analyzes the quality of the solution produced by the algorithm.

Lemma 1. ([3]) Let r be a constant. Suppose that in the algorithm above the
choice of i and the decomposition p = p′ + p′′ is always such that: (1) p′′

i = 0,
and (2) every i-maximal solution is an r-approximation with respect to p′. Then,
the algorithm terminates and the solution Q produced is an r-approximation with
respect to p.

Proof. First note that since p′′
i = 0, the call i will be deleted in the recursive call,

and the algorithm will eventually terminate. Because the deletion of calls with
non-positive profit in step 1 does not change the optimum value, it is sufficient
to show that Q is an r-approximation with respect to the remaining calls. Since
Q is i-maximal, the condition (2) implies that Q is an r-approximation with
respect to p′. It remains to show that Q is also an r-approximation with respect
to p′′ (and then apply the local ratio theorem). We proceed by induction on
the number of recursive calls of the algorithm. At the basis of the recursion,
the algorithm returns the empty set, since no calls remain. This is clearly an
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optimal solution and, hence, also an r-approximation. For the induction step,
assume that Q′′ is an r-approximation with respect to p′′. Since p′′

i = 0 and Q is
either Q′′ or Q′′∪{i}, it follows that Q is an r-approximation with respect to p′′

as well. By the local ratio theorem (Theorem 1), Q is also an r-approximation
with respect to p. ��

By Lemma 1 we only need to find a constant r > 0 such that every i-maximal
solution is an r-approximation with respect to p′. To do so, we will derive an
upper bound popt on the optimum p′-profit and a lower bound pmax on the
p′-profit of every i-maximal solution. The ratio r = pmax/popt is then a lower
bound on the approximation ratio of the algorithm.

3 Constant-Factor Approximation for GCA in Stars

In this section we present a 1/18-approximation algorithm for GCA in star net-
works. Without loss of generality, we can assume that every call in the set R
uses exactly two edges. We partition the calls in R into three classes according
to their bandwidth requirements. Consider a call i ∈ R and denote by e and f
the edges that it uses. We classify the call i to be

– a small call, if it uses at most half of the capacity on both of its edges, i.e.,
bi ≤ c(e)/2 and bi ≤ c(f)/2,

– a big call, if it uses more than half of the capacity on both of its edges, i.e.,
bi > c(e)/2 and bi > c(f)/2,

– a mixed call, otherwise.

We denote the set of small, big, and mixed calls by Rsmall, Rbig, and Rmixed,
respectively. We give a constant-factor approximation for each of the three
classes. The algorithm for the original problem is then as follows. Partition the
calls in R into the three classes and solve the problem for each of the classes
separately. Output the solution with the largest profit among the three solutions
for the classes.

Small Calls. We approximate this set using the unified algorithm from above.
Let i be the call with minimum end-time ti + di selected by the algorithm in
step 3 and denote by e and f the edges that call i uses, such that c(e) ≤ c(f).
We decompose the profit function p = p′ + p′′ by defining p′ according to

p′
j = pi ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if j = i,

α · (c(f)− bi) · bj if i and j intersect on edge e at time ti + di,

α · (c(e)− bi) · bj if i and j intersect only on edge f at time ti + di,

0 otherwise,

where α is a parameter that will be determined later. Note that p′′
i = 0. The

values of the profit function p′′ = p− p′ may be non-positive.

Lemma 2. The set of small calls admits an approximation ratio of 1/4.
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Proof. Due to Lemma 1 it suffices to show that every i-maximal solution is a
1/4-approximation with respect to p′. Let Q∗ be a p′-optimal solution. In case
i is not in Q∗, the contribution of other calls in Q∗ using edge e is at most
pi · α · (c(f) − bi) · c(e), since the total bandwidth of all these calls intersecting
at time ti + di is at most c(e). Likewise the contribution on edge f is at most
pi ·α · (c(e)− bi) · c(f). In case i belongs to Q∗, the call i adds pi to the p′-profit
of Q∗, and uses bi of the capacity of the edges e and f . The contribution of other
calls in Q∗ to the p′-profit is then at most pi · α · (c(f)− bi) · (c(e)− bi) on edge
e, and pi · α · (c(e)− bi) · (c(f)− bi) on edge f .

If we set X = (c(f)− bi) · (c(e)− bi), then the p′-profit of Q∗ is at most

pi ·max{α · (c(f)− bi) · c(e) + α · (c(e)− bi) · c(f), 1 + 2 · α ·X}.
To derive a lower bound on the p′-value of an i-maximal solution Q, we

distinguish two cases. If the call i is in Q, it contributes pi itself. Thus the p′-
profit of Q is at least pi. Otherwise, the call i is blocked by other calls in Q.
This means that the total bandwidth of the calls preventing call i from being
accepted must be greater than c(e) − bi on edge e or greater than c(f) − bi on
edge f , respectively. Hence, the p′-profit of the blocking calls is at least pi ·α ·X
(no matter on which of the edges e or f the call i is blocked). The minimum
pi ·min{1, α ·X} of both expressions is a lower bound on the p′-value of every
i-maximal solution. Altogether, the approximation ratio r is given by

r =
min{1, α ·X}

max{α · (c(f)− bi) · c(e) + α · (c(e)− bi) · c(f), 1 + 2 · α ·X} ,

which for α = 1
X = 1

(c(f)−bi)·(c(e)−bi)
gives r = 1/ max

{
c(e)

c(e)−bi
+ c(f)

c(f)−bi
, 3
}

.
Finally, the fact that i is a small call, i.e., bi ≤ c(e)/2 and bi ≤ c(f)/2, implies
that r is at least 1/4. ��
Big Calls. In the case of big calls, no two calls using the same edge simultane-
ously can be in a feasible solution. Therefore we may assume that bj = 1 for all
big calls j and that c(e) = 1 for all edges e ∈ E. To define the decomposition
p = p′ + p′′, we set p′ to be

p′
j = pi ·

{
1 if j = i or i and j intersect at time ti + di,

0 otherwise.

The proof of the following lemma is similar to (but easier than) the proof of
Lemma 2.

Lemma 3. The set of big calls admits an approximation ratio of 1/2.

Mixed Calls. Mixed calls use at most half of the capacity of one of their two
edges, and need more than half of the capacity of the other edge. They cause
the logarithmic factor in the approximation ratio shown by Erlebach in [11]. We
briefly sketch the reason for this. Erlebach defines mixed calls as calls using at
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most 1/3 of the capacity of one of their edges and more than 1/2 of the capacity
of the other. For an edge e, some mixed calls using e may use at most 1/3 of the
capacity of e, while others may use more than 1/2. For a call using at most 1/3
of the capacity of edge e, Erlebach [11] has to argue about the second edge f
used by this call; on that edge f , the call uses more than half of the capacity. If
there is another call using at most 1/3 of the capacity of that edge f , he has to
argue about the second edge of that call, and so on. The capacity of the edges
considered in this chain of arguments decreases by a factor of 2/3 in each step;
thus the number of steps is O(log R), where R is the ratio of the maximum to
the minimum edge capacity, and this factor enters into the approximation ratio.

Here, we present a randomized procedure to approximate the mixed calls
within a constant factor of the optimum. Our method can easily be derandom-
ized, as we will discuss later on. We perform the following random experiment
on the star network. Every outer node v ∈ {1, . . . , n} is put independently with
probability 1/2 in a set A and with probability 1/2 in a set B. Then we consider
only those mixed calls that have one endpoint in the set A and the other end-
point in the set B. We denote this set of calls by RA,B . The probability that a
mixed call belongs to RA,B is exactly 1/2. This implies that the expected profit
of an optimal solution for the set RA,B is at least half the profit of an optimal
solution for all mixed calls. Hence, we lose only a factor of 2 in expectation.

After this random experiment, all calls in RA,B connect a vertex in A with
a vertex in B. For a call i ∈ RA,B , let e(i) denote the edge of the path of i
connecting its endpoint in A with the center node 0, and let f(i) denote the edge
of the path between the center node and its endpoint in B. We further partition
the calls in RA,B according to their bandwidths. If a mixed call i ∈ RA,B uses
more than half of the capacity of the edge e(i) (and at most half of the capacity
of the edge f(i)), we put the call i in the set RA. Otherwise, we put the call
i in the set RB . By considering RA and RB separately, we avoid the problem
encountered in the analysis in [11], i.e., we do no longer have to deal with mixed
calls occupying a large fraction and those occupying a small fraction of the
capacity of the same edge at the same time.

Lemma 4. Each of the sets RA and RB admits an approximation ratio of 1/3.

Proof. To approximate the sets RA and RB we again use the unified algorithm.
For the set RA we decompose p = p′ + p′′ by specifying p′ to be

p′
j = pi ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if j = i,

α/2 if i and j intersect on edge e(i) at time ti + di,

α · bj

c(f(i)) if i and j intersect only on edge f(i) at time ti + di,

0 otherwise.

A p′-optimal solution accepts on edge e(i) either the call i with p′-profit pi or
one other call that intersects call i on the edge e(i) and gives profit pi · α/2.
On the edge f(i) the total bandwidth of accepted calls is bounded by c(f(i)),
yielding a bound of pi · α on the optimal p′-profit on that edge. An i-maximal
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solution contains either the call i with p′-profit pi or is blocked by calls with
profit at least pi · α/2. Hence, the approximation ratio r is given by

r =
min{1, α/2}

max{1, α/2}+ α
,

which, for α = 2, gives r = 1/3.
By symmetry, the set RB can be approximated with the same ratio. ��
After approximating both sets RA and RB by the unified algorithm, we

output the solution that has a larger profit.

Corollary 1. The set of mixed calls admits an approximation ratio of 1/12.

Proof. The larger solution for the sets RA and RB has profit at least 1/6 times
the profit of an optimal solution for the set RA,B , which, in expectation, is a
factor 1/2 away from the optimal solution for all mixed calls. ��

We have approximation ratio 1/4, 1/2, and 1/12 for the small calls, big calls,
and mixed calls, respectively. As our algorithm outputs the solution with largest
profit among the three individual solutions, we obtain the following theorem.

Theorem 2. The above algorithm is a 1/18-approximation algorithm for GCA
in stars.

3.1 Derandomization

The random process for filtering the mixed calls can be derandomized by reduc-
ing the size of the sample space. We refer to [1–Chapter 15] for an overview. In
the analysis of our randomized algorithm, we used two properties of our random
assignment. Firstly, the probability that a node v is assigned to the set A is 1/2,
and secondly the pairwise independence of the events, which guarantees that
each call “survives” the experiment (i.e., its two endpoints are put into different
sets) with probability 1/2.

We employ a linear-size sample space that preserves these two properties. If
we choose assignments uniformly at random from this sample space, our previous
analysis remains valid. Thus, if we exhaustively search the sample space, we are
guaranteed to find an assignment of nodes to the sets A and B such that the
profit of an optimal solution for calls in RA,B is at least half the profit of an
optimal solution for all mixed calls. The construction of the linear-size sample
space is omitted due to space limitations.

3.2 Call Alternatives

Our approximation algorithm can be generalized to accommodate alternatives
for the calls with only a slight decrease of the approximation ratio. Call alterna-
tives allow the specification of several alternatives for establishing a connection
request. For example, a connection can be established either from 8:00 a.m. to
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11:00 a.m. gaining profit p1 or from 2:00 p.m. to 4:00 p.m. with profit p2. We
allow all parameters (including source node, destination node, and bandwidth
requirement) of different alternatives of a call to be different. A solution obeying
the capacity constraints is feasible if it contains at most one of the alternatives
per call. The goal is to find the feasible solution with the largest profit. For this
generalized problem, we use exactly the same algorithm as above and change
only the decomposition of the profit function in the unified algorithm for each
class of calls. In this case, the approximation ratios for the set of small calls, big
calls, and mixed calls become 1/5, 1/3, and 1/16, respectively. This leads to the
following theorem.

Theorem 3. GCA in stars with call alternatives admits an approximation ratio
of 1/24.

4 APX -Hardness

In this section we prove that already a very restricted variant of the general
call admission control problem in stars is APX -hard. The problem variant we
consider is the following. We are given a star network with unit capacity on
every edge, and a set R of calls. Each call i is associated with a starting time
ti ∈ {0, 1, 2}, has unit profit, and needs one unit of bandwidth on its edges. Every
call i has duration di = 2. The goal is to compute a feasible subset Q ⊆ R of
maximum cardinality. In the following we refer to this problem variant as Star-
GCA-simple, because many parameters of the general version are simplified
by fixing them to be small constants. A set Q ⊆ R is a feasible solution for
Star-GCA-simple if at most one path per edge is active at any time.

We remark that the cases with one or two different starting times can be
solved optimally in polynomial time (still assuming that all calls have the same
duration). To see this, note that a maximum cardinality subset among a given
set of calls that overlap in time can be obtained using a maximum matching
computation [10, 19] in the graph with an edge {u, v} for every request with
endpoints u and v. This settles the case of one starting time. If there are two
different starting times, either all calls overlap in time or the problem decomposes
into two instances on disjoint time intervals.

If we allow three or more different starting times, the restricted variant of gen-
eral call admission in star networks becomes difficult to solve, which is expressed
in the next theorem.

Theorem 4. The problem Star-GCA-simple is APX -hard.

Corollary 2. GCA in stars is APX -hard.

In particular, Theorem 4 implies that there is no polynomial-time approxi-
mation scheme for the restricted and its more general variants unless P = NP.
Thus, the constant-factor approximations we have presented are best possible
(except possibly for the constants) in this sense.
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We will prove the theorem by an approximation preserving reduction, which
is defined as follows [2].

Definition 1 (AP -reduction). Let P1 and P2 be two optimization problems in
NPO. For a solution y to an instance x of Pi, let ratioPi

(x, y) denote the ratio
between the value of an optimal solution to x and the value of y (or the reciprocal
of this ratio, whichever is larger than 1). The problem P1 is called AP -reducible
to P2 if two functions f and g and a positive constant α > 1 with the following
properties exist:

(i) For any instance x of P1 and for any rational r > 1, f(x, r) is an instance
of P2.

(ii) For any instance x of P1 and for any rational r > 1, if there is a solution to
x, then there is also a solution to f(x, r).

(iii) For any instance x of P1, for any rational r > 1, and for any solution y to
f(x, r), g(x, y, r) is a solution to x.

(iv) f and g are computable in polynomial time for any fixed rational r.
(v) For any instance x of P1, for any rational r > 1, and for any solution y to

f(x, r), ratioP2(f(x, r), y) ≤ r implies ratioP1(x, g(x, y, r)) ≤ 1 + α(r − 1).

The properties (i)-(iv) ensure that there are polynomial time transformations
f and g that map instances of P1 to instances of P2 and solutions for instances
of P2 back to solutions for the original instance of P1, respectively. The heart
of the AP -reduction is given by property (v), which intuitively says that an
r-approximation algorithm for P2 implies the existence of a (1 + α(r − 1))-
approximation algorithm for P1.

In the sequel we present an AP -reduction from the maximum 3-dimensional
matching problem, which is defined as follows: Given a set D ⊆ X × Y × Z,
where X, Y and Z are disjoint sets, the goal is to find a matching M ⊆ D for D
of maximum cardinality, i.e., a largest set M ⊆ D such that no two elements in
M agree in any coordinate. The maximum 3-dimensional matching problem is
known to be APX -complete even if each of the elements in X, Y and Z occurs
in at most three triples in D [15]. We refer to this problem as the bounded
maximum 3-dimensional matching problem.

In this bounded version of the problem, each triple can intersect at most six
other triples, which implies that the maximum matching contains at least |D|/7
triples. Moreover, the following lemma is easy to prove.

Lemma 5. There is a greedy procedure that computes a 1/3-approximation for
the bounded maximum 3-dimensional matching problem.

Let D ⊆ X ×Y ×Z be an instance of the maximum 3-dimensional matching
problem. The function f of the AP -reduction is given by the following construc-
tion of an instance of Star-GCA-simple. It does not depend on the parame-
ter r.

Let vertex 0 be the center vertex of the star. For every element xi ∈ X, we add
the vertex xi to the star and connect it to vertex 0 by an edge {xi, 0}. We do the
same for every yi ∈ Y and for every zi ∈ Z. For each triple dj = (xj , yj , zj) ∈ D,
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Fig. 1. The building block for a triple dj = (xj , yj , zj)

we add three more vertices dj,1, dj,2, and dj,3 to the star and connect them to
the center by the three edges {dj,1, 0}, {dj,2, 0}, and {dj,3, 0}. In addition, we
add the following 5 requests to R (see Figure 1):
– r1 = (dj,1, dj,2) with interval [0, 2) – r2 = (dj,2, dj,3) with interval [2, 4)
– r3 = (dj,1, xj) with interval [1, 3) – r4 = (dj,2, yj) with interval [1, 3)
– r5 = (dj,3, zj) with interval [1, 3)

Note that the dotted request r1 and the dashed request r2 have disjoint time
intervals, whereas the solid requests r3, r4, and r5 do not share any edge. The
idea behind this is the following. For every triple di ∈ D, a solution either accepts
the two request r1 and r2 without affecting any edge connecting a vertex from
the sets X, Y, Z to the center, but blocking the requests r3, r4 and r5, or it
accepts the three requests r3, r4 and r5 at the price of blocking all three edges
connecting the center to the elements of the triple di. More than three requests
per triple are not feasible.

Lemma 6. Let D ⊆ X × Y × Z be an instance of the maximum 3-dimensional
matching problem, and let (G,R) be the corresponding instance of Star-GCA-
simple defined above. There is a feasible solution for (G,R) that accepts 2|D|+k
requests if and only if D has a matching of size k.

Proof. Suppose there is a feasible solution Q for the instance (G,R) of size
2|D|+k. Since no more than three requests in Q belong to the same triple, there
are at least k triples for which three requests are in Q. The only possibility for
one triple di = (xi, yi, zi) to have three of its requests accepted is the choice
that accepts the three requests containing the vertices xi, yi and zi. But then
these vertices are blocked for the requests of all other triples. The feasibility of
Q implies that all k triples are disjoint. Hence, they form a matching of size k.

Conversely, if there is a matching M ⊆ D of size k, we can construct a feasible
solution Q for the instance (G,R) as follows. For every triple di ∈ M , put the
three requests r3, r4 and r5 into Q. Since the triples in M are disjoint, Q is
feasible so far. For each of the remaining triples in D \M , we can safely add the
two requests r1 and r2 to Q without creating any conflict. Thus, Q is feasible by
construction, and consists of 2|D|+ k requests. ��
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The function g of the AP -reduction takes as arguments the instance D of
the bounded maximum 3-dimensional matching problem, a solution Q of the
instance (G,R) and the parameter r, which will not be used. It first computes a
solution M1 for the instance D using the greedy procedure of Lemma 5. Secondly,
it composes a matching M2 out of the accepted requests in the solution Q.
Whenever all three requests r3, r4 and r5 corresponding to some triple di ∈ D
are in Q, it adds the triple di to the matching M2. The value of g(D, Q, r)
is given by the larger of the two matchings M1 and M2. Thus, |g(D, Q, r)| =
max{|M1|, |M2|}. In addition, we have |M1| ≥ |M∗|/3 by Lemma 5, where M∗

is a maximum matching for D, and |M2| ≥ |Q| − 2|D| by Lemma 6.
So far the properties (i) – (iv) of the AP -reduction have been shown to be

satisfied, and we will now show that property (v) holds with α = 43. Therefore,
let M∗ be a maximum matching for the instance D. Then by Lemma 6 an
optimal solution Q for (G,R) consists of |M∗|+ 2|D| requests. Assume that we
have an r-approximation for (G,R), that is a solution Q that contains at least
(|M∗|+ 2|D|)/r requests.

If r ≥ 45/43, the inequality |g(D, Q, r)| ≥ |M1| ≥ |M∗|/3 shows that g
computes a 1/3-approximation. Since 3 = 1+43(45

43−1) ≤ 1+43(r−1), property
(v) with α = 43 holds in this case.

Otherwise r < 45/43. From |Q| ≥ (|M∗|+ 2|D|)/r, we get

|Q| ≥ 2r|D|+ |M∗| − 2(r − 1)|D|
r

= 2|D|+ |M∗| − 2(r − 1)|D|
r

≥ 2|D|+ |M∗|(1− 14(r − 1))
r

,

where we used |D| ≤ 7|M∗| (which holds in the bounded version) in the last
inequality. As |g(D, Q, r)| ≥ |M2| ≥ |Q| − 2|D| ≥ (1− 14(r − 1))|M∗|/r, we get
that ratioP1(D, g(D, Q, r)) is at most

|M∗|
(1− 14(r − 1))|M∗|/r

= 1 +
15

15− 14r
(r − 1) ≤ 1 + 43(r − 1),

where the last inequality holds for 1 < r < 45/43. Again, property (v) is fulfilled
with α = 43, which completes the proof of the theorem.
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Abstract. Consider a scenario where base stations need to send data to
users with wireless devices. Time is discrete and slotted into synchronous
rounds. Transmitting a data item from a base station to a user takes one
round. A user can receive the data item from any of the base stations.
The positions of the base stations and users are modeled as points in
Euclidean space. If base station b transmits to user u in a certain round,
no other user within distance at most ‖b−u‖2 from b can receive data in
the same round due to interference phenomena. The goal is to minimize,
given the positions of the base stations and users, the number of rounds
until all users have their data.

We call this problem the Joint Base Station Scheduling Problem (JBS)
and consider it on the line (1D-JBS) and in the plane (2D-JBS). For
1D-JBS, we give a 2-approximation algorithm and polynomial optimal
algorithms for special cases. We model transmissions from base stations
to users as arrows (intervals with a distinguished endpoint) and show
that their conflict graphs, which we call arrow graphs, are a subclass
of the class of perfect graphs. For 2D-JBS, we prove NP-hardness and
discuss an approximation algorithm.

1 Introduction

We consider different combinatorial aspects of problems that arise in the context
of load balancing in time division networks. These problems turn out to be
related to interval scheduling problems and interval graphs.

The general setting is that users with mobile devices are served by a set of base
stations. In each time slot (round) of the time division multiplexing each base
station serves at most one user. Traditionally, each user is assigned to a single
base station that serves him until he leaves its cell or his demand is satisfied.
The amount of data that a user receives depends on the strength of the signal
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b1 b2 b3u1 u2 u3 u4 u5 u6

(a) This figure describes a possible sit-
uation in some time slot (round). Base
station b2 serves user u2, b3 serves user
u6. Users u3, u4 and u5 are blocked and
cannot be served. Base station b1 can-
not serve u1 because this would create
interference at u2

b1 b2 b3u1 u2 u3 u4 u5 u6

(b) Arrow representation of 1(a)
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(c) A possible situation in some
time slot in the 2D case. Users
u2, u4, u7 and u12 are served.
Base station b5 cannot serve
user u1 here, because this would
create interference at u4 as in-
dicated by the dashed circle

Fig. 1.1. The JBS-problem in one and two dimensions

that he receives from his assigned base station and on the interference, i.e. all
signal power that he receives from other base stations. In [4], Das et al. propose a
novel approach: Clusters of base stations jointly decide which users they serve in
which round in order to increase network performance. Intuitively, this approach
increases throughput, when in each round neighboring base stations try to serve
pairs of users such that the mutual interference is low. We turn this approach
into a discrete scheduling problem in one and two dimensions (see Figure 1.1),
the Joint Base Station Scheduling problem (JBS).

In one dimension (see Figure 1.11(a)) we are given a set of n users as points
{u1, . . . , un} on a line and we are given positions {b1, . . . , bm} of m base stations.
Note that such a setting could correspond to a realistic scenario where the base
stations and users are located along a straight road. In our model, when a base
station bj serves a user ui this creates interference in an interval of length 2|bj−ui|
around the midpoint bj . In each round each base station can serve at most one
user such that at the position of this user there is no interference from any other
base station. The goal is to serve all users in as few rounds as possible. In two
dimensions (see Figure 1.11(c)), when base station bj serves user ui this creates
interference in a disk with radius ‖bj − ui‖2 and center bj .

The one-dimensional problem is closely related to interval scheduling prob-
lems, except that the particular way how interference operates leads to directed
intervals (arrows). For these we allow that their tails can intersect (intersect-
ing tails correspond to interference that does not affect the users at the heads
of the arrows). We present results on this special interval scheduling problem.
Similarly, the problem is related to interval graphs, except that we have con-
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flict graphs of arrows together with the conflict rules defined by the interference
(arrow graphs).

The problem of scheduling data transmissions in the smallest number of dis-
crete rounds can be expressed as the problem of coloring the corresponding arrow
graph with the smallest number of colors, where the colors represent rounds. In
this paper, we prove that arrow graphs are perfect and can be colored optimally
in O(n log n) time. For the one-dimensional JBS problem with evenly spaced
base stations we give a polynomial-time dynamic programming algorithm. For
the general one-dimensional JBS problem, we show that for any fixed k the ques-
tion whether all users can be served in k rounds can be solved in polynomial time.
From the perfectness of arrow graphs and the existence of a polynomial-time al-
gorithm for computing maximum weighted cliques in these graphs we derive a
2-approximation algorithm for JBS based on an LP relaxation and rounding.
For the two-dimensional JBS problem, we show that it is NP-complete, and we
discuss an approximation algorithm for a constrained version of the problem.

1.1 Related Work

Das et al. [4] propose an involved model for load balancing that takes into account
different fading effects and calculates the resulting signal to noise ratios at the
users for different schedules. In each round only a subset of all base stations
is used in order to keep the interference low. The decision which base stations
to use is taken by a central authority. The search for this subset is formulated
as a (nontrivial) optimization problem that is solved by complete enumeration
and that assumes complete knowledge of the channel conditions. The authors
perform simulations on a hexagonal grid, propose other algorithms, and reach
the conclusion that the approach has the potential to increase throughput.

There is a rich literature on interval scheduling and selection problems (see
[6, 12] and the references given there for an overview). Our problem is more
similar to a setting with several machines where one wants to minimize the
number of machines required to schedule all intervals. A version of this problem
where intervals have to be scheduled within given time windows is studied in [3].
Inapproximability results for the variant with a discrete set of starting times for
each interval are presented in [2].

1.2 Problem Definitions and Model

We fully define the problems of interest in this section. Throughout the paper we
use standard graph-theoretic terminology, see e.g. [14]. In the one-dimensional
case we are given positions of base stations B = {b1, . . . , bm} and users U =
{u1, . . . , un} on the line in left-to-right order. Conceptually, it is more convenient
to think of the interference region that is caused by some base station bj serving
a user ui as an interference arrow of length 2|bj − ui| with midpoint bj pointing
to the user as shown in Figure 1.11(b). The interference arrow for the pair
(ui, bj) has its head at ui and its midpoint at bj . We denote the set of all arrows
resulting from pairs P ⊆ U ×B by A(P ). If it is clear from the context, we call
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the interference arrows just arrows. If two users are to be scheduled in the same
round, then each of them must not get any interference from any other base
station. Thus, two arrows are compatible if no head is contained in the other
arrow; otherwise, we say that they are in conflict. (Formally, the head ui of the
arrow for (ui, bj) is contained in the arrow for (uj , bk) if ui is contained in the
closed interval [bk − |uj − bk|, bk + |uj − bk|].) If we want to emphasize which
user is affected by the interference from another transmission, we use the term
blocking, i.e. arrow ai blocks arrow aj if aj ’s head is contained in ai. For each
user we have to decide from which base station she is served. This corresponds
to a selection of an arrow for her. Furthermore, we have to decide in which round
each selected arrow is scheduled under the side constraint that all arrows in one
round must be compatible. For this purpose it is enough to label the arrows with
colors that represent the rounds.

For the two-dimensional JBS problem we have positions in R2 and interfer-
ence disks d(bi, uj) with center bi and radius ‖bi − uj‖2 instead of arrows. We
denote the set of interference disks for the user base-station pairs from a set P
by D(P ). Two interference disks are in conflict if the user that is served by one
of the disks is contained in the other disk; otherwise, they are compatible. The
problems can now be stated as follows:

1D-JBS
Input: A set of user positions U = {u1, . . . , un} ⊂ R and base station positions

B = {b1, . . . , bm} ⊂ R.
Output: A set P of n user base-station pairs such that each user is in exactly one

pair, and a coloring C : A(P ) → N of the set A(P ) of corresponding arrows
such that any two arrows ai, aj ∈ A(P ), ai �= aj , with C(ai) = C(aj) are
compatible.

Objective: Minimize the number of colors used.

2D-JBS
Input: A set of user positions U = {u1, . . . , un} ⊂ R2 and base station positions

B = {b1, . . . , bm} ⊂ R2.
Output: A set P of n user base-station pairs such that each user is in exactly

one pair, and a coloring C : D(P) → N of the set D(P) of corresponding
disks such that any two disks di, dj ∈ D(P), di �= dj , with C(di) = C(dj)
are compatible.

Objective: Minimize the number of colors used.

From the problem definitions above it is clear that both the 1D- and the
2D-JBS problems consist of a selection problem and a coloring problem. In the
selection problem we want to select one base station for each user in such a way
that the arrows (disks) corresponding to the resulting set P of user base-station
pairs can be colored with as few colors as possible. We call a selection P feasible
if it contains exactly one user base-station pair for each user. Determining the
cost of a selection is then the coloring problem. This can also be viewed as a
problem in its own right, where we no longer make any assumption on how the
set of arrows (for the 1D problem) is produced. The conflict graph G(A) of a
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set A of arrows is the graph in which every vertex corresponds to an arrow and
there is an edge between two vertices if the corresponding arrows are in conflict.
We call such conflict graphs of arrows arrow graphs. The arrow graph coloring
problem asks for a proper coloring of such a graph. It is similar in spirit to the
coloring of interval graphs. As we will see in Section 2.1, the arrow graph coloring
problem can be solved in time O(n log n). We finish this section with a simple
lemma that leads to a definition:

Lemma 1. For each 1D-JBS instance there is an optimal solution in which each
user is served either by the closest base station to his left or by the closest base
station to his right.

Proof. This follows by a simple exchange argument: Take any optimal solution
that does not have this form. Then exchange the arrow where a user is not served
by the closest base station in some round against the arrow from the closest base
station on the same side (which must be idle in that round). Shortening an arrow
without moving its head can only resolve conflicts. Thus, there is also an optimal
solution with the claimed property. ��

The two possible arrows by which a user can be served according to this lemma
are called user arrows. It follows that for a feasible selection one has to choose
one user arrow from each pair of user arrows.

2 Case on the Line—1D-JBS

As mentioned above, solving the 1D-JBS problem requires selecting an arrow for
each user and coloring the resulting arrow graph with as few colors as possible.

2.1 Relation of Arrow Graphs to Other Graph Classes

In order to gain a better understanding of arrow graphs, we first discuss their
relationship to other known graph classes.1 We refer to [1, 13] for definitions and
further information about the graph classes mentioned in the following.

First, it is easy to see that arrow graphs are a superclass of interval graphs:
Any interval graph can be represented as an arrow graph with all arrows pointing
in the same direction.

An arrow graph can be represented as the intersection graph of triangles
on two horizontal lines y = 0 and y = 1: Simply represent an arrow with left
endpoint � and right endpoint r that points to the right (left) as a triangle with

1 The connections between arrow graphs and known graph classes such as PI∗ graphs,
trapezoid graphs, co-comparability graphs, AT-free graphs, and weakly chordal
graphs were observed by Ekki Köhler, Jeremy Spinrad, Ross McConnell, and R.
Sritharan at the seminar “Robust and Approximative Algorithms on Particular
Graph Classes”, held in Dagstuhl Castle during May 24–28, 2004.
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Fig. 2.1. An arrow graph (top) and its representation as a PI∗ graph (bottom)

corners (�, 0), (r, 0), and (r, 1) (with corners (r, 1), (�, 1), and (�, 0)). It is easy
to see that two triangles intersect if and only if the corresponding arrows are in
conflict. See Figure 2.1 for an example.

Intersection graphs of triangles with endpoints on two parallel lines are called
PI∗ graphs. They are a subclass of trapezoid graphs, which are the intersection
graphs of trapezoids that have two sides on two fixed parallel lines. Trapezoid
graphs are in turn a subclass of co-comparability graphs, a well-known class
of perfect graphs. Therefore, the containment in these known classes of per-
fect graphs implies the perfectness of arrow graphs. Consequently, the size of a
maximum clique in an arrow graph always equals its chromatic number.

As arrow graphs are a subclass of trapezoid graphs, we can apply known
efficient algorithms for trapezoid graphs to arrow graphs. Felsner et al. [7] give
algorithms with running-time O(n log n) for chromatic number, weighted inde-
pendent set, clique cover, and weighted clique in trapezoid graphs with n ver-
tices, provided that the trapezoid representation is given. Their algorithm for
chromatic number leads to a simple greedy coloring algorithm for arrow graphs
(see [5]).

We sum up the discussed properties of arrow graphs in the following theorem.

Theorem 1. Arrow graphs are perfect. In arrow graphs chromatic number,
weighted independent set, clique cover, and weighted clique can be solved in time
O(n log n).

One can also show that arrow graphs are AT-free (i.e., do not contain an
asteroidal triple) and weakly chordal.

2.2 1D-JBS with Evenly Spaced Base Stations

Now we consider the 1D-JBS problem under the assumption that the base sta-
tions are evenly spaced. We are given m base stations {b1, . . . , bm} and n users
{u1, . . . , un} on a line, where the distance between any two neighboring base
stations is the same. This assumption can be viewed as an abstraction of the
fact that in practice, base stations are often placed in regular patterns and not
in a completely arbitrary fashion.

Let d denote the distance between two neighboring base stations. The base
stations partition the line into two rays and a set of intervals {v1, . . . , vm−1}. In
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this section we additionally require that no user to the left of the leftmost base
station be further away from it than distance d, and that the same holds for the
right end. We define a solution to be non-crossing if there are no two users u
and w in the same interval such that u is to the left of w, u is served from the
right, and w from the left.

Lemma 2. There is an optimal solution that is non-crossing.

Proof. Take any optimal solution s that is not non-crossing. We show that such a
solution can be transformed into another optimal solution s′ that is non-crossing.
Let u and w be two users such that u and w are in the same interval, u is to
the left of w, and u is served by the right base station br in round t1 by arrow
ar and w is served by the left base station bl in round t2 by arrow al; trivially,
t1 �= t2. Modify s in such a way that at t1 base station br serves w and at t2 base
station bl serves u. This new solution is still feasible because first of all both the
left and the right involved arrows al and ar have become shorter. This implies
that both al and ar can only block fewer users. On the other hand, the head of
al has moved left and the head of ar has moved right. It is impossible that they
are blocked now because of this movement: In t1 this could only happen if there
were some other arrows containing w, the new head of ar. This arrow cannot
come from the left, because then it would have blocked also the old arrow. It
cannot come from br because br is busy. It cannot come from a base station to
the right of br, because such arrows do not reach any point to the left of br (here
we use the assumption that the rightmost user is no farther to the right of the
rightmost base station than d, and that the base stations are evenly spaced). For
t2 the reasoning is symmetric. ��
The selection of arrows in any non-crossing solution can be completely charac-
terized by a sequence of m − 1 division points, such that the ith division point
is the index of the last user that is served from the left in the ith interval. (The
case where all users in the ith interval are served from the right is handled by
choosing the ith division point as the index of the rightmost user to the left of
the interval, or as 0 if no such user exists.) A brute-force approach could now
enumerate over all possible O(nm−1) division point sequences (dps) and color
the selection of arrows corresponding to each dps with the greedy algorithm.

Dynamic Programming

We can solve the 1D-JBS problem with evenly spaced base stations more effi-
ciently by a dynamic programming algorithm that runs in polynomial time. The
idea of the algorithm is to consider the base stations and thus the intervals in
left-to-right order. We consider the cost χi(di−1, di) of an optimal solution up to
the ith base station conditioned on the position of the division points di−1 and
di in the intervals vi−1 and vi, respectively, see Figure 2.2.

Definition 1. We denote by χi(α, β) the minimum number of colors needed to
serve users u1 to uβ using the base stations b1 to bi under the condition that base
station bi serves exactly users uα+1 to uβ and ignoring the users uβ+1, . . . , un.
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c(i, di−1, di, di+1)

Fig. 2.2. Dynamic programming approach

Let Λ(vi) denote the set of potential division points for interval vi, i.e., the
set of the indices of users in vi and of the rightmost user to the left of vi (or
0 if no such user exists). The values χ1(d0, d1) for d0 = 0 (all users to the left
of b1 must be served by b1 in any solution) and d1 ∈ Λ(v1) can be computed
directly by using the coloring algorithm from [7]. For i ≥ 1, we compute the
values χi+1(di, di+1) for di ∈ Λ(vi), di+1 ∈ Λ(vi+1) from the table for χi(·, ·). If
we additionally fix a division point di−1 for interval vi−1, we know exactly which
selected arrows intersect interval vi regardless of the choice of other division
points. Observe that this only holds for evenly spaced base stations and no “far
out” users. For this selection, we can determine with the coloring algorithm from
[7] how many colors are needed to color the arrows intersecting vi. Let us call
this number c(i, di−1, di, di+1) for interval vi and division points di−1, di and
di+1. We also know how many colors we need to color the arrows intersecting
intervals v0 to vi−1. For a fixed choice of division points di−1, di and di+1 we can
combine the two colorings corresponding to χi(di−1, di) and c(i, di−1, di, di+1):
Both of these colorings color all arrows of base station bi, and these arrows must
all have different colors in both colorings. No other arrows are colored by both
colorings, so χi(di−1, di) and c(i, di−1, di, di+1) agree up to redefinition of colors.
We can choose the best division point di−1 and get

χi+1(di, di+1) = min
di−1∈Λ(vi−1)

max {χi(di−1, di), c(i, di−1, di, di+1)}

The running time is dominated by the calculation of the c(·) values. There are
O(m · n3) such values, and each of them can be computed in time O(n log n)
using the coloring algorithm from [7]. The optimal solution can be found in the
usual way by tracing back where the minimum was achieved from χm(x, n).
Here the x is chosen among the users of the interval before the last base station
such that χm(x, n) is minimum. For the traceback it is necessary to store in the
computation of the χ values where the minimum was achieved. The traceback
yields a sequence of division points that defines the selection of arrows that gives
the optimal schedule. Altogether, we have shown the following theorem:

Theorem 2. The base station scheduling problem for evenly spaced base stations
can be solved in time O(m · n4 log n) by dynamic programming.

Note that the running time can also be bounded by O(m · u4
max log umax),

where umax is the maximum number of users in one interval.
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2.3 Exact Algorithm for the k-Decision Problem

In this section we present an exact algorithm for the decision variant k-1D-JBS
of the 1D-JBS problem: For given k and an instance of 1D-JBS, decide whether
all users can be served in at most k rounds. We present an algorithm for this
problem that runs in O(m · n2k+1 log n) time.

We use the result from Section 2.1 that arrow graphs are perfect. Thus the
size of the maximum clique of an arrow graph equals its chromatic number.

The idea of the algorithm, which we call Ak−JBS, is to divide the problem into
subproblems, one for each base station, and then combine the partial solutions
to a global one.

For base station bi, the corresponding subproblem Si considers only arrows
that intersect bi and arrows for which the alternative user arrow2 intersects bi.
Call this set of arrows Ai. We call Si−1 and Si+1 neighbors of Si. A solution
to Si consists of a feasible selection of arrows from Ai of cost no more than k,
i.e. the selection can be colored with at most k colors. To find all such solutions
we enumerate all possible selections that can lead to a solution in k rounds.
For Si we store all such solutions {s1

i , . . . , s
I
i } in a table Ti. We only need to

consider selections in which at most 2k arrows intersect the base station bi. All
other selections need more than k rounds, because they must contain more than
k arrows pointing in the same direction at bi. Therefore, the number of entries
of Ti is bounded by

∑2k
j=0

(
n
j

)
= O(n2k). We need O(n log n) time to evaluate a

single selection with the coloring algorithm from [7]. Selections that cannot be
colored with at most k colors are marked as irrelevant and ignored in the rest
of the algorithm. We build up the global solution by choosing a set of feasible
selections s1, . . . , sm in which all neighbors are compatible, i.e. they agree on the
selection of common arrows. It is easy to see that in such a global solution all
subsolutions are pairwise compatible.

We can find such a set of compatible neighbors by going through the tables
in left-to-right order and marking every solution in each table as valid if there
is a compatible, valid solution in the table of its left neighbor, or as invalid
otherwise. A solution si marked as valid in table Ti thus indicates that there are
solutions s1, . . . , si−1 in T1, . . . , Ti−1 that are compatible with it and pairwise
compatible. In the leftmost table T1, every feasible solution is marked as valid.
When the marking has been done for the tables of base stations b1, . . . , bi−1, we
can perform the marking in the table Ti for bi in time O(n2k+1) as follows. First,
we go through all entries of the table Ti−1 and, for each such entry, in time O(n)
discard the part of the selection affecting pairs of user arrows that intersect only
bi−1 but not bi, and enter the remaining selection into an intermediate table
Ti−1,i. The table Ti−1,i stores entries for all selections of arrows from pairs of
user arrows intersecting both bi−1 and bi. An entry in Ti−1,i is marked as valid
if at least one valid entry from Ti−1 has given rise to the entry. Then, the entries
of Ti are considered one by one, and for each such entry si the algorithm looks

2 For every user there are only two user arrows that we need to consider (Lemma 1).
If we consider one of them, the other one is the alternative user arrow.
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up in time O(n) the unique entry in Ti−1,i that is compatible with si to see
whether it is marked as valid or not, and marks the entry in Ti accordingly. If
in the end the table Tm contains a solution marked as valid, a set of pairwise
compatible solutions from all tables exists and can be retraced easily.

The overall running time of the algorithm is O(m · n2k+1 · log n). There is a
solution to k-1D-JBS if and only if the algorithm finds such a set of compatible
neighbors. In the technical report [5] we give a formal proof of this statement.

Theorem 3. Problem k-1D-JBS can be solved in time O(m · n2k+1 · log n).

2.4 Approximation Algorithm

In this section we present an approximation algorithm for 1D-JBS that relies
on the properties of arrow graphs from Theorem 1. Let A denote the set of
all user arrows of the given instance of 1D-JBS. From the perfectness of arrow
graphs it follows that it is equivalent to ask for a feasible selection Asel ⊆ A
minimizing the chromatic number of its arrow graph G(Asel) (among all feasible
selections) and to ask for a feasible selection Asel minimizing the maximum
clique size of G(Asel) (among all feasible selections). Exploiting this equivalence,
we can express the 1D-JBS problem as an integer linear program as follows. We
introduce two indicator variables li and ri for every user i that indicate whether
she is served by the left or by the right base station, i.e. if the user’s left or right
user arrow is selected. Moreover, we ensure by the constraints that no cliques in
G(Asel) are large and that each user is served. The ILP formulation is as follows:

min k (2.1)

s.t.
∑
li∈C

li +
∑
ri∈C

ri ≤ k ∀ cliques C in G(A) (2.2)

li + ri = 1 ∀i ∈ {1, . . . , |U |} (2.3)
li, ri ∈ {0, 1} ∀i ∈ {1, . . . , |U |} (2.4)
k ∈ N (2.5)

The natural LP relaxation is obtained by allowing li, ri ∈ [0, 1] and k ≥ 0.
Given a solution to this relaxation, we can use a rounding technique to get an
assignment of users to base stations that has cost at most twice the optimum,
i.e., we obtain a 2-approximation algorithm. Let us denote by opt the optimum
number of colors needed to serve all users. Then opt ≥ k, because the optimum
integer solution is a feasible fractional solution. Construct now a feasible solution
from a solution to the relaxed problem by rounding li := 	li + 0.5
, ri := 1− li.
Before the rounding the size of every (fractional) clique is at most k; afterwards
the size can double in the worst case. Therefore, the cost of the rounded solution
is at most 2k ≤ 2opt. We remark that there are examples where the cost of an
optimal solution to the relaxed program is indeed smaller than the cost of an
optimal integral solution by a factor of 2.
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Fig. 2.3. Example of an arrow graph with an exponential number of maximum cliques.
For every choice of arrows from a compatible pair (a2i−1, a2i) we get a clique of size
n/2, which is maximum. The arrow graph can arise from a 1D-JBS instance with two
base stations in the middle and n/2 users on either side

One issue that needs to be discussed is how the relaxation can be solved in
time polynomial in n and m, as there can be an exponential number of con-
straints (2.2). (Figure 2.3 shows that this can really happen. The potentially
exponential number of maximal cliques in arrow graphs distinguishes them from
interval graphs, which have only a linear number of maximal cliques.) Fortu-
nately, we can still solve such an LP in polynomial time with the ellipsoid method
of Khachiyan [11] applied in a setting similar to [10]. This method only requires
a separation oracle that provides us for any values of li, ri with a violated con-
straint, if one exists. It is easy to check for a violation of constraints (2.3) and
(2.4). For constraints (2.2), we need to check if for given values of li, ri the max-
imum weighted clique in G(A) is smaller than k. By Theorem 1 this can be done
in time O(n log n). Summarizing, we get the following theorem:

Theorem 4. There is a polynomial-time 2-approximation algorithm for the 1D-
JBS problem.

3 General Case in the Plane—2D-JBS

We analyze the two-dimensional version (2D-JBS) of the base station scheduling
problem. We show that the decision variant k-2D-JBS of the 2D-JBS problem
is NP-complete and we present a constant factor approximation algorithm for
a constrained version of it. The k-2D-JBS problem asks for a given k and an
instance of 2D-JBS whether the users can be served in at most k rounds.

3.1 NP-Completeness of the 2D-JBS Problem

Here we briefly sketch our reduction from the general graph k-colorability prob-
lem [8] to 2D-JBS; the complete proof can be found in the technical report
[5]. Our reduction follows the methodology presented in [9] for unit disk k-
colorability.

Given any graph G, it is possible to construct in polynomial time a corre-
sponding 2D-JBS instance that can be scheduled in k rounds if and only if G is
k-colorable. We use an embedding of G into the plane which allows us to replace
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the edges of G with suitable base station chains with several users in a systematic
way such that k-colorability is preserved. Our main result is the following:

Theorem 5. The k-2D-JBS problem in the plane is NP-complete for any fixed
k ≥ 3.

In the k-2D-JBS instances used in our reduction, the selection of the base
station serving each user is uniquely defined by the construction. Hence, our
reduction proves that already the coloring step of the 2D-JBS problem is NP-
complete.

Corollary 1. The coloring step of the k-2D-JBS problem is NP-complete for
any fixed k ≥ 3.

3.2 Approximation Algorithms

Bounded Geometric Constraints. We consider instances where the base
stations are at least a distance Δ from each other and have limited power to
serve a user, i.e., every base station can serve only users that are at most Rmax
away from it. We also assume that for every user there is at least one base
station that can reach the user. We present a simple algorithm achieving an
approximation ratio depending only on the parameters Δ and Rmax.

Tiling the plane into a grid of squares of size 2Rmax × 2Rmax and labelling
the grid as in Figure 3.1 we get sets of squares Sa, Sb, Sc and Sd, where Sx is
the set of squares with label x. We can place the grid in such a way that no
base station lies on the boundary of a square. Note that if two base stations bi

and bj are in different squares of the same label, their distance is greater than
2Rmax and, therefore, their transmissions cannot interfere. Now the algorithm
proceeds as follows. While not all users are served, it goes in four steps through
labels a, b, c and d. For each square of the current label, it repeatedly chooses an
arbitrary base station from that square that can serve some user (i.e., the user

a b a

c d c d

baba

c d c d

b

d

d c d c

b

d

b

d

Fig. 3.1. Tiling of the plane
into a grid of squares of size
2Rmax ×2Rmax and labelling
of the squares

.   .   .

b0b1

b2

bnu1

u2

un

Fig. 3.2. A greedy approach serves n users placed
on a common interference disk in n time steps. An
optimum algorithm can serve the users in one time
step by assigning ui to base station bi, which lies on
a halfline determined by b0 and ui
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is at distance at most Rmax from the base station and there is no interference at
the user in the current round) and schedules the transmission from the chosen
base station to that user in the current round. It keeps choosing base stations in
the current square in this way as long as possible. If, after executing this step for
all squares of the current label, there are still some unserved users, the algorithm
proceeds to the next label and starts a new round.

We analyze the algorithm as follows. For every grid square s, let ks denote
the number of rounds in which a base station in s serves a user (in the solution
computed by the algorithm). Let us be the number of users served by base
stations in s. Note that us ≥ ks. Choose a square s for which ks is maximum.
It is clear that the solution of the algorithm uses at most 4ks rounds, since the
squares with the label of s are considered at least once every four rounds. Now
we derive a lower bound on the number of rounds in the optimum solution.
The us users served by the algorithm from base stations in s are contained in a
square with side length 4Rmax, as the maximum transmission radius is Rmax. The
base stations that the optimum solution uses to serve these users must then be
contained in a square of side length 6Rmax for the same reason. As disks of radius
Δ/2 centered at different base stations are interior-disjoint by assumption, an
easy area argument shows that there can be at most ρ = (6Rmax +Δ)2/π(Δ/2)2

base stations in such a square. Therefore, even the optimal algorithm cannot
serve more than ρ of the us users in one round. Hence, the optimum solution
needs at least ks/ρ rounds. This establishes the following theorem.

Theorem 6. There exists an approximation algorithm with approximation ratio
16
π ( 6Rmax+Δ

Δ )2 for 2D-JBS in the setting where any two base stations are at least
Δ away from each other and every base station can serve only users within
distance at most Rmax from it.

General 2D-JBS. In the technical report [5] we also discuss lower bounds
on three natural greedy approaches for the general 2D-JBS problem: serve a
maximum number of users in each round (max-independent-set), or repeatedly
choose an interference disk of an unserved user with minimum radius (smallest-
disk-first), or repeatedly choose an interference disk containing the fewest other
unserved users (fewest-users-in-disk). In [5] we prove the following theorem.

Theorem 7. There are instances (U, B) of 2D-JBS in general position (i.e.,
with no two users located on the same circle centered at a base station) for which
the maximum-independent-set greedy algorithm, the smallest-disk-first greedy al-
gorithm, and the fewest-users-in-disk greedy algorithm have approximation ratio
Ω(log n), where n = |U |.

For instances of 2D-JBS that are not in general position, the smallest-disk-
first greedy algorithm can have approximation ratio n, as shown in Figure 3.2.
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4 Conclusion and Open Problems

In this paper we study the 1D- and 2D-JBS problems that arise in the context of
coordinated scheduling in packet data systems. These problems can be split into
a selection and a coloring problem. In the one-dimensional case, we have shown
that the coloring problem leads to the class of arrow graphs, for which we have
discussed its relation to other graph classes and algorithms. For the selection
problem we propose an approach based on LP relaxation and rounding. For
the 2D-problem, we have shown its NP-completeness. Several problems remain
unsolved. In particular, it is open whether the 1D-JBS problem is NP-complete.
For 2D-JBS it would be interesting to design approximation algorithms whose
approximation ratio does not depend on the ratio Rmax

Δ . Moreover, algorithmic
results for more refined models would be interesting.
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Theoretical Computer Science, 2004.

6. T. Erlebach and F. C. R. Spieksma. Interval selection: Applications, algorithms,
and lower bounds. Algorithmica, 46:27–53, 2001.

7. S. Felsner, R. Müller, and L. Wernisch. Trapezoid graphs and generalizations,
geometry and algorithms. Discrete Applied Mathematics, 74:13–32, 1997.

8. M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, 1979.
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Abstract. Given an arbitrary network, and a routing problem with con-
gestion C and dilation D, a long standing open problem is to show the
existence of bufferless routing algorithms with optimal performance guar-
antees (routing time close to the lower bound Ω(C+D)). Our main result
is a new deterministic technique that constructs a universal bufferless al-
gorithm by emulating a universal buffered algorithm. The heart of the
emulation is to replace packet buffering with packet circulation on re-
gions of the network. The cost of the emulation on the routing time is
proportional to the square of the node buffer size used by the buffered
algorithm. We apply this emulation to a simple randomized buffered algo-
rithm to obtain a distributed, universal bufferless algorithm with routing
time O((C + D) · log3(n + N)), which is within poly-logarithmic factors
from the optimal, where n is the size of the network and N is the number
of packets. The bufferless competitive ratio is the ratio of the best achiev-
able bufferless routing time, to the best achievable buffered routing time.
We give the first non-trivial bound of O(log3(n + N)) for the bufferless
competitive ratio for arbitrary routing problems.

1 Introduction

Packet Routing. has received a large amount of attention over the past decade on
account of its importance to applications ranging from parallel and distributed
algorithms to communication networks. The task is to deliver packets from their
sources to their destinations along specified paths in a given network. A packet
routing algorithm is universal if it can be applied to any routing problem on
any network topology. For a given set of paths, the routing time (denoted rt) is
the time at which the last packet reaches its destination. Universal algorithms
with optimal or near-optimal routing time are known if packets may be buffered
along their paths, [20, 23, 24].

A long standing and important open problem is to give universal bufferless
routing algorithms with near optimal performance guarantees. In this paper,
we will present a distributed bufferless routing algorithm that is optimal up to
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poly-logarithmic factors. We introduce a new technique for developing bufferless
algorithms based upon emulating buffered algorithms. Applying this technique
to a simple randomized buffered protocol gives the advertised result.

Preliminaries. A routing problem Q = (G, Π, P ) on the graph G with n nodes
consists of a set of N packets Π = {π1, π2, . . . , πN} that are to be routed on
their respective paths P = {p1, p2, . . . , pN}, where pi is a path in G. We will
represent paths either as a sequence of edges, or as a sequence of nodes, and the
length of a path |p| is the number of edges in the path. The edge-congestion C
is the maximum number of packets that use an edge in G, the node-congestion
C is the maximum number of packets that use a node in G, and the dilation D
is the maximum path length in P .

We assume a synchronous routing model, in which time is divided into a
sequence of discrete time steps. An edge may be traveresed by at most one
packet in either direction during a time step. A well known lower bound on the
routing time in this model is given by Ω(C + D), and so the optimal routing
time rt∗ = Ω(C +D). In a buffered algorithm, packets may either traverse edges
or be buffered at a node. In a bufferless algorithm, a packet must traverse an
available edge at every time step.
An Impossibility Result. If all packets must follow the paths specified in P ,
without collisions or buffering, then the only degree of freedom for a bufferless
routing algorithm is the injection times of the packets. Such a routing paradigm
is known as direct routing, [3, 13]. In this case, it is shown in [13] that there
exist routing problems for which bufferless routing times better than a

√
N

factor from optimal are not possible. Thus, if the paths remain unchanged, then
near-optimal universal bufferless algorithms do not exist (where near optimal
means within poly-logarithmic factors from the lower bound C + D). Thus, to
obtain near-optimal bufferless schedules, we must allow packets to deviate from
their paths. However, we still measure performance with respect to C and D
of the original paths. The justification of this is that if the paths P themselves
are optimal, i.e., they minimize C + D, then we obtain bufferless routing times
that are near-optimal for the given sources and destinations. We do not discuss
how to obtain the optimal paths, but rather how to send the packets to their
destinations given the paths.

Contributions. Our main result is a deterministic technique for bufferless emu-
lation of buffered algorithms. Given a near-optimal universal buffered algorithm
that routes problems with simple paths, and uses buffers of size γ, we give a
universal bufferless algorithm, which emulates the buffered algorithm. The cost
of the emulation on the routing time is O(γ2 · log n).

We apply this emulation result to a simple randomized buffered algorithm
that uses O(log(n + N)) buffers to obtain a bufferless routing algorithm with
routing time O((C +D) · log3(n+N)) with high probability, which approximates
within poly-logarithmic factors the optimal routing time for the given paths. If
all the nodes know the network topology, and the values of C and N , then the
bufferless algorithm is distributed, i,e., routing decisions are made locally at each
node.
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Fig. 1. An example of a region graph

Overview of the Approach. The main idea behind the bufferless emulation of a
buffered algorithm is to use regions in the network in order to emulate buffer
space. We decompose the graph into connected regions each containing approx-
imately γ edges. The regions form a region graph, on which the nodes are re-
gions. Now, a buffered algorithm executes as if the regions were the nodes. In
the buffered algorithm, a packet is either buffered in a node (region) or “hops”
from node to node. The path of each packet in the original graph is translated
to a path on the region graph. The buffer needed at each node is at most γ.
Figure 1 illustrates the general idea of decomposing the graph into regions and
then mapping a packet’s path to the graph in which every node corresponds to
a region.

The buffered algorithm on the region graph is emulated by a bufferless algo-
rithm on the original graph. If in the buffered algorithm a packet needs to be
buffered in a node (region), then, in the emulation the packet “circulates” in the
respective region by moving from one edge of the region to the next. A packet
circulates until the buffered algorithm prescribes that the packet makes its next
hop, in which case the packet moves to the respective adjacent region. Since the
buffered algorithm requires γ buffer space per node (region), there is enough
room to circulate all the packets in the γ edges of the region in a buffereless
fashion.

Related Work. There are no previously known results for universal bufferless
routing with near-optimal routing time guarantees. However, near-optimal buffer-
less routing has been obtained for specific bufferless routing models and archi-
tectures, which we summarize. In hot-potato routing, packets are deflected along
available links in a collision [5]. Our model of bufferless routing is essentially the
hot-potato routing model, with packets being deflected along particular avail-
able edges specified by the emulation (i.e., not on an arbitrary available edge
as is typically done in hot-potato algorithms). Hot-potato routing algorithms
have been extensively studied for a variety of architectures such as the mesh and
torus [4, 6, 10, 12, 16, 19], hypercubes [9, 16, 18], trees [14, 25], vertex-symmetric
networks [21], and leveled networks [8, 11]. Typically, by allowing packets to
deviate from their paths slightly, one obtains routing times that are within poly-
logarithmic factors of optimal. In direct routing, packets follow their paths with-
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out buffering and without any collisions, [3, 13]. Wormhole routing is similar to
direct routing, but here, packets occupy more than one edge [15, 17]. A dual to
direct routing is time constrained routing, where the task is to schedule as many
packets as possible within a given time frame [1]. In matching routing, packets
are swapped at adjacent nodes, and permutation problems on trees have been
studied in [2, 26].

There are two variants of buffered algorithms. Those that use buffers on
every edge (edge-buffers) and those that use buffers in every node (node-buffers).
For non-bounded degree networks, these variants are distinct. The existence of
optimal, universal buffered routing algorithms using constant size edge-buffers
was first established by Leighton, Maggs and Rao [20]. Thereafter, the main
focus has been on constructive algorithms with optimal, O(C + D), routing
time, [7, 22, 23, 24]. These algorithms use large (proportional to the congestion C)
buffers. Leighton et al. [20] improve this result, requiring only edge-buffers of size
O(log ND) to obtain routing time O(C + D log ND). Cypher at al. [15] give an
algorithm with edge-buffers of size O(log CD) and slightly better routing time.
Our bufferless algorithm is based on emulating a universal buffered algorithm.
However, the existing results, though powerful, do no suit our purpose because
we need algorithms where the node-buffers are small (logarithmic), and so we
offer a simple randomized algorithm that satisfies the conditions for bufferless
emulation.

Paper Outline. We first discuss how to decompose a graph into connected regions
of approximately a given size (Section 2). We then show how these regions are
used for bufferless emulation of a buffered algorithm (Section 3). Finally we apply
the emulation to a randomized buffered algorithm (Section 4) to obtain near-
optimal universal bufferless routing (Section 5). We conclude with a discussion
(Section 6). Due to lack of space, several proofs have moved to the full version
of the paper.

2 Regions

We first discuss how to decompose a connected graph G into connected compo-
nents of approximately a specified size. Such a decomposition will be required by
the bufferless emulation algorithm. Specifically, let G = (V, E) be an undirected
connected graph. Let F be a subset of the edges in E. The subgraph induced by
F is the graph H = (U, F ), where U is the union of all vertices in V that are
incident with edges in F . We say that the edge set F is connected if the induced
subgraph H is connected. A connected decomposition of G is a partition of the
edges in E into disjoint sets E1, E2, . . . , Ek such that ∪k

i=1Ei = E and every Ei

is connected. We refer to the Ei’s as the connected edge sets or regions in the
decomposition, and denote the number of edges in Ei as the size of Ei, |Ei|.
Notice that the subgraphs, H1 = (V1, E1), . . . , Hk = (Vk, EK) induced by the
edge sets may have overlapping vertex sets. We say that Ei is connected to Ej

if and only if Vi ∩ Vj �= ∅. Notice that if Ei is connected to Ej , then Ei ∪ Ej is
a connected edge set.
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An [α, β]-partition of G (if it exists) is a connected decomposition of G,
{Ei, . . . , Ek}, such that α ≤ |Ei| ≤ β for i = 1, . . . , k. Notice that if α ≈ β, then
an [α, β]-partition decomposes G into connected edge sets of size approximately
equal to α. We now show that such approximate decompositions are possible for
any connected graph.

Theorem 1 (Existence of a [k, 3k − 3]-partition). Let G = (V, E) be a
connected graph. For any k, where 1 < k ≤ |E|, there exists a [k, 3k−3]-partition
of G.

G

G

G

The following example proves that the result of Theorem
1 is tight. For a given k, let G be any connected graph with
k − 2 edges, and connect 3 such graphs in a wheel configu-
ration as shown on the right. It is easy to see that the only
decomposition in which every edge set has ≥ k edges is the
entire graph itself, which has 3k − 3 edges.

The proof in Theorem 1 is constructive, hence it can be directly converted
to an algorithm. One can show that the time complexity of the algorithm to
compute a decomposition is in O(|E|2).
Region Graph. Consider a connected graph G = (V, E), with n nodes. Take an
[α, β]-partition of G, which gives regions (connected edge sets) R1, R2, . . . , Rk.
Let the subgraphs induced by these regions have vertex sets U1, U2 . . . , Uk. The
region graph G′ = (V ′, E′), has a vertex set V ′ = {r1, r2, . . . , rk} where each
vertex ri corresponds to the region Ri of G. Two vertices ri, rj are adjacent in
G, i.e., (ri, rj) ∈ E′ if and only if Ui ∩ Uj �= ∅, i.e., the corresponding regions
have intersecting vertex sets. An example of a region graph is given in Figure 1.

Routing Problems on Region Graph. Let Q = (G, Π, P ) denote a routing prob-
lem with edge-congestion C, node-congestion C and dilation D. Let {R1, . . . , Rk}
be an [α, β]-partition of G. Every edge in G belongs to exactly one region. Let
G′ = (V ′, E′) be the corresponding region graph. The mapping f : E → V ′ is
defined for every e ∈ E by f(e) = ri if and only if e ∈ Ri. Consider a path
p ∈ P , with p = (e1, e2, . . . , el). We define a function g which maps a path in G
to a path in G′ as follows. For any path p = (e1, e2, . . . , el) in G, consider the
walk in G′ given by w′ = (f(e1), f(e2), . . . , f(el)). g(p) is the path obtained after
removing all the cycles in w′, g(p) = (f(ei1), f(ei2), . . . , f(eil

)).
We now transform the routing problem Q on the original graph into a routing

problem Q′ = (G′, Π, P ′) on the region graph, in which the paths in G′ are given
by the transformed paths, P ′ = {p′

1, p
′
2, . . . , p

′
N} where p′

i = g(pi), ∀pi ∈ P . Let
C ′, C ′ and D′ denote the edge-congestion, the node-congestion and the dilation
of the paths in P ′. For any routing problem, the edge-congestion is bounded
by the node-congestion. A path uses node ri only if it contains edges in Ri. By
construction, |Ri| ≤ β, so the number of edges in P that use Ri is at most βC,
thus C ′ ≤ βC. Since |g(p)| ≤ |p| for any path p in G, we have the following
lemma.

Lemma 1. C ′ ≤ C ′ ≤ βC; D′ ≤ D.
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Euler Tours on Regions. We define Euler tours with respect to the directed
representation GD = (V, ED) of the undirected graph G: each (undirected) edge
(u, v) ∈ E is replaced by two directed edges (u, v), (v, u) ∈ ED. Let RD

i denote
the region of GD that corresponds to the region Ri in G. Since the in-degree
equals the out-degree of every node in RD

i , RD
i has an Euler tour. Let ψi =

(v1, v2, . . . , v1) denote an Euler tour in RD
i . Note that ψi is walk in Ri. We will

refer to ψi as the “Euler tour” of Ri (an abuse of notation, since ψi is not an
Euler tour of Ri). Note that for an [α, β]-partition of G, every Euler tour ψi

satisfies 2α ≤ |ψi| ≤ 2β.

3 Emulation

Let G = (V, E) be a connected graph with n nodes and let {R1, . . . , Rk} be an
[α, β]-partition of G with corresponding region graph G′ = (V ′, E′). For routing
problem Q = (G, Π, P ) in G, we obtain the corresponding routing problem
Q′ = (G′, Π, P ′) in G′. Let (si, di) denote the source and destination of each
packet πi ∈ Π, and let S = {(s1, d1), (s2, d2), . . . , (sN , dN )}. Let Qs = (G, Π, S)
denote the routing problem in G in which the packets need to be delivered from
their sources to their destination, without necessarily following the paths in P .

The general idea behind our approach is to design a bufferless routing Algo-
rithm B to solve the routing problem Qs. The bufferless algorithm will depend
on a buffered Algorithm A to solve the routing problem Q′ in G′. The bufferless
algorithm will then emulate the running of Algorithm A in G′ to solve Qs in G.

3.1 Buffered Routing in G′ – Algorithm A

Our bufferless algorithm in G will emulate a buffered algorithm A in G′. Algo-
rithm A solves routing problem Q′ in G′ and uses node-buffers of size at most
γ to do so. We require algorithm A to receive at most γ packets at every time
step. It is then possible to divide the execution of Algorithm A, into a sequence
of phases, in which each phase has the following two properties:

(i) Each phase is a fixed time period consisting of at least one time step;
(ii) During each phase, each packet traverses at most one edge in G′, and each

node receives at most γ packets from adjacent nodes or through injection.

A trivial division of the execution of Algorithm A into phases that satisfies these
two properties is to take each phase to be a single time step. In Section 4, we give
a specific buffered Algorithm A1 in which each phase contains O(log(n + N))
time steps. During a single phase of Algorithm A, a packet π may perform one
of four actions (in G′):

(i) Remain in the buffer of its current node. [Buffering]
(ii) Move from its current node to a neighboring node. [Packet Transfer]
(iii) Be injected into the network at its source node. [Injection]
(iv) Move to and be absorbed in its destination node. [Absorbtion]
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3.2 Bufferless Routing in G – Algorithm B

Algorithm B emulates the phases of Algorithm A (which is faster than emulating
the individual time steps of Algorithm A). Algorithm B emulates the buffering of
packets and their transfer from node to node using an [α, β]-partition of G, where
α = 2γ. (We assume that 2γ ≤ |E| and by Theorem 1, we can set β = 6γ − 3.)
In Algorithm A, when a packet is buffered in a node ri of G′, then Algorithm
B emulates this by letting the packet circulate in the edges of region Ri in G.
When in Algorithm A a packet is transferred from node ri to node rj of G′,
in Algorithm B the packet is transferred from region Ri to region Rj in G.
Similarly, algorithm B handles the packet injection and absorbtion. Next we
describe the emulation in more detail.

Phases and Rounds. Let Φ denote the number of phases in Algorithm A. In
Algorithm B, time is divided into Φ phases. Each phase of B emulates a phase
of A. In order to perform the emulation of a phase, Algorithm B further divides
each phase into Σ rounds, where Σ is defined below. The duration of each round
is Tr = 4β2 + 4β time steps. Thus the bufferless algorithm runs for Φ · Σ · Tr

time steps in total.
For the duration of a round, a region is either in the sending or the receiving

state – we say that the region is sending, or receiving. In the emulation, when a
packet has to be transferred from one region to the next, the first region should
be sending while the other receiving. We guarantee that for any pair of adjacent
nodes there is a round in each phase in which one region is sending and the other
is receiving (and vice-versa), as follows.

In order to determine if a region is sending or receiving, we first obtain a
vertex coloring of G′. Let δi denote the color (non-negative integer in binary
representation) assigned to node ri in G′ (which will also be the color of region
Ri), and let δ denote the maximum color we obtain from the vertex coloring.
Note that δ ≤ n′, where n′ = |V ′| ≤ |E|/α. Let σ denote the number of bits in δ,
σ = �log δ
 ≤ � log n′ 
. By pre-padding with zeros, we assume that every δi has
σ bits. We define the state parameter xi for region Ri to be the 2σ-bit integer
δ̄iδi, where δ̄i is the binary complement of δi. We use the notation xi(k) to denote
the k-th bit of xi. We set Σ = 2σ ≤ 2� log n′ 
, i.e., each phase in Algorithm B,
consists of 2σ rounds, ω1, ω2, . . . , ω2σ. During round ωk, if xi(k) = 0 then region
Ri is sending, otherwise, if xi(k) = 1, then region Ri is receiving. Our assignment
of colors ensures that during every phase, a region can send or receive from each
of its neighbors.

Lemma 2. If Ri and Rj are adjacent, then during every phase φ, there is at
least one round ωs (ωr) in which Ri is sending (receiving) and Rj is receiving
(sending).

Proof. Since Ri and Rj are adjacent, δi and δj must differ at some bit s, 0 ≤
s ≤ σ − 1. Thus, rounds s and s + σ satisfy the requirements, since xi(s + σ) =
xi(s) = xj(s) = xj(s + σ).
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Packet Circulation. Packet circulation is a basic function for the emulation. Dur-
ing packet circulation, a packet π repeatedly follows the Euler tour of the region
Ri that it is in: at each time step, packet π follows the next edge in the Euler
tour; when π reaches the end of the Euler tour it continues from the beginning
of the tour, and so on. At the time step in which packet π traverses an edge
e ∈ ψi, we say that e is the current edge of π.

At each round of a phase, a region is either sending or receiving. The speed at
which a packet circulates in its region depends on whether the region is sending
or receiving. If the region is receiving, then the packet follows the Euler tour in
the normal fashion.

If the region is sending, then the packet moves at an effectively slower speed
as follows. At time step 0 (the beginning of the round), suppose that π is at
node u with current edge e = (u, v) ∈ ψi. At time step 0, packet π follows its
current edge (u, v) and at time step 1, π appears in node v. At time step 1,
suppose that its new current edge in ψi is (v, w); the packet does not follow its
new current edge in ψi, but instead it follows edge (v, u) from v back to u, and
thus at time step 2, it appears back in node u. Thus after two time steps, the
packet has effectively not moved. We call such an operation an oscillation, and
we say that packet π oscillates on its current edge in the Euler path. The time
period of the oscillation is 2 time steps, The packet continues in this fashion for
subsequent time steps, so at even time steps t = 2i, it appears in node u, and at
odd time steps t = 2i + 1 it appears in node v, for i ≥ 0. The packet performs
β such oscillations on its current edge e, and so after 2β time steps, the packet
appears at u and follows edge e for the last time. At time step Ts = 2β + 1,
the packet is now at v and at this point it stops oscillating on edge e and
begins oscillating on its new current edge (v, w) ∈ ψi. Thus, after Ts time steps,
the packet advances by one edge in the Euler path of ψi. Consequently, since
|ψi| ≤ 2β, after 2βTs = 4β2 + 2β time steps, a packet circulating in region Ri

has oscillated at least once on every edge of ψi.
Lemma 3. After 4β2 + 2β < Tr time steps, a packet circulating in a sending
region Ri has oscillated at least once on every edge in ψi.
Suppose that the directed edge e = (u, v) ∈ ψi, is an edge in the Euler path of
a receiving region Ri. If at time step t, no packet has edge e as its current edge,
then we say that e is empty. At each time step, we say that an empty edge is
associated with an empty slot. Empty slots are similar to packets in that they
too circulate – as the packets in a receiving region circulate (forward) in ψi,
the empty slots circulate (backward) in ψi at the same rate. They continue to
circulate until some packet occupies the empty edge.

Emulation of Buffering. Suppose that packet π is buffered at node ri of G′

during the execution of phase φ of Algorithm A. Assume that in Algorithm B,
packet π is in region Ri of G. Packet π will circulate in Ri through the entire
phase φ.
Lemma 4. If packet π is in Ri at the end of phase φ−1 of bufferless Algorithm
B, and in phase φ of buffered Algorithm A it is buffered in node ri, then in phase
φ of bufferless Algorithm B, it can be buffered in region Ri using circulation.
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Emulation of Packet Transfer. Suppose that in phase φ of Algorithm A, packet
π moves from node ri to node rj . Assume that at the beginning of phase φ in
Algorithm B, packet π is in region Ri. During phase φ in Algorithm B, π will
move from Ri to Rj as follows. Packet π will circulate in Ri until a round ω of
φ in which Ri is sending and Rj is receiving (the existence of such a round is
guaranteed by Lemma 2).

Since ri and rj are adjacent in G′, there exists a node u which is common
to Ri and Rj . Since node u is in Ri, there exists an edge ei = (ui, u) ∈ ψi on
the Euler path of Ri. Similarly, there exists an edge ej = (u, uj) ∈ ψj on the
Euler tour of Rj . During round ω, packet π circulates (in slow mode) in region
Ri along the Euler tour ψi. At some particular slow time step τ of the round,
the current edge of π will be ei. During the course of its Ts > β oscillations
on edge ei, the packet will appear at the common node u at the β + 1 times
τ + 1, τ + 3, . . . , τ + 2β + 1. If at any of these times, the edge ej ∈ ψj is an
empty slot, i.e., not the current edge of any packet circulating (in normal mode)
in Rj , then π switches from oscillation on edge ei, making ej its new current
edge. π now continues to circulate in Rj at normal speed. Note that π will have
completed its circulation on edge ei in at most 4β2 + 2β time steps, thus π will
enter Rj within the first 4β2 + 2β time steps of round ω.

We now show that during round ω, for at least one of the time steps τ +
1, τ + 3, . . . , τ + 2β + 1, the edge ej ∈ ψj will be an empty slot. Remember
that empty slots circulate in Rj at the rate of one edge per time-step. Thus, if
an empty slot is not occupied by any packet during its circulation, then every
edge in ψj will become an empty slot at least once during a consecutive 2β time
steps. In particular, edge ej will become an empty slot at least once in the time
steps τ + 1, τ + 2, τ + 3, . . . , τ + 2β + 1. A problem arises if ej becomes empty
at time τ + k where k is even, because then packet π will not be at node u,
able to utilize this edge. This problem is solved if there is a second consecutive
empty slot in Rj that will also not be occupied by any other packet during its
circulation. This second empty slot must also appear at least once in the time
steps τ + 1, τ + 2, τ + 3, . . . , τ + 2β + 1, and since both these empty slots cannot
appear at τ +k for k even, we are assured that π will be able to transfer into Rj .

From the previous phase, suppose that there are at most γ packets circulat-
ing in Rj . During the current phase, at most γ more packets will enter Rj , by
definition of the buffered Algorithm A. In the worst case, all the γ − 1 pack-
ets other than π that will enter have already entered, and none of the packets
that are to leave this region in this phase have left yet. In this case there are
at most 2γ − 1 packets that could be circulating in Rj during round ω. Since
α = 2γ and there are at least in 2α = 4γ edges ψj , we conclude that there
are at least 2γ + 1 empty slots during round ω. By the pigeonhole principle, at
least two of these empty slots must be consecutive, and we have the following
lemma.

Lemma 5. Suppose that in phase φ − 1 of bufferless Algorithm B, at most
γ packets are circulating in region Rj, and that packet π is circulating in the
adjacent region Ri. Suppose that in buffered Algorithm A, packet π moves from
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ri to rj in phase φ. Then during phase φ of bufferless Algorithm B, packet π
can be transferred (using circulation) from region Ri to Rj.

Emulation of Injection. Suppose that π is a packet that is to be injected into
the network in Algorithm A. Let p be the path of π in G, and let e be the first
edge in this path, and u the injection node. Suppose that e ∈ Ri – note also
that u ∈ Ri. In this case, π is injected into node ri in G′. Suppose that π is
injected into ri during phase φ of buffered Algorithm A. Then π will be injected
into Ri in phase φ of bufferless Algorithm B during the last round in which Ri

is receiving. After injection, it will circulate in Ri until the end of phase φ. Let
e = (u, v) be an edge on the Euler path ψi of Ri. We know that from the previous
analysis of packet transfer that if Ri had at most γ packets circulating in phase
φ− 1, then e will be an empty slot at least 2γ + 1 times during every receiving
round. At the time that e becomes empty, π is injected into the network and e
becomes its current edge. π then continues to circulate in Ri. Note that at least
γ packets could be injected into Ri from the same injection node during a single
receiving round.

Lemma 6. Suppose that in phase φ − 1 of bufferless Algorithm B, at most γ
packets are circulating in region Ri. Suppose that packet π has first edge e ∈ Ri

and that during phase φ of buffered Algorithm A, packet π is injected into node
ri. Then during phase φ of bufferless Algorithm B, packet π can be injected into
Ri. Further, at least γ packets can be injected into the same node during a single
receiving round.

Emulation of Absorbtion. Suppose that packet π moves from node ri to its des-
tination node rj in phase φ in buffered Algorithm A. We use the packet transfer
emulation to first move the packet from region Ri to Rj in phase φ. This takes at
most 4β2 + 2β time steps. Then the packet circulates in the receiving region at
normal speed until it reaches its destination node, at which point it is absorbed.
Since the packet completes the Euler tour for Rj in at most 2β time steps, the
number of time steps to move and be absorbed is 4β2 + 4β ≤ Tr, giving the
following lemma.

Lemma 7. Suppose that in phase φ − 1 of bufferless Algorithm B, at most
γ packets are circulating in region Rj, and that packet π is circulating in the
adjacent region Ri. Suppose that in phase φ of buffered Algorithm A, packet π
is absorbed in rj. Then, during phase φ of bufferless Algorithm B, packet π can
be absorbed at its destination node in region Rj.

3.3 Analysis of Emulation by Bufferless Algorithm B

First, we prove that Algorithm B correctly emulates Algorithm A. We then
analyse the routing time of Algorithm B in G in terms of the routing time of
Algorithm A in G′.
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Correctness. Assume that α = 2γ ≤ |E| in order to guarantee the existence of
the [α, β]-partition. Algorithm B correctly emulates algorithm A if at the end
of every phase φ:

i. In Algorithm A, packet π is in node ri iff in Algorithm B it is circulating in
region Ri

ii. In algorithm A packet π is injected (absorbed) at node ri, if and only if in
Algorithm B packet π is injected (absorbed) into region Ri.

We show by induction on φ that Algorithm B correctly emulates Algorithm A.
Observe that when φ = 1, Algorithm A can only inject packets into nodes. The
conditions of Lemma 6 are satisfied, and since at most γ packets are injected
into a node in G′, Algorithm B can succesfully inject these packets into the
corresponding regions. Suppose that Algorithm B correctly emulates Algorithm
A up to phase φ0 ≥ 1. At the end of phase φ0, there are at most γ packets
circulating in any region Ri since every packet π in node ri in the execution of
Algorithm A is in region Ri in the execution of Algorithm B. Thus, the conditions
of Lemmas 4, 5, 6, and 7 are satisfied for every packet π. Every action that π
could make in phase φ0 +1 of Algorithm A can now be emulated in phase φ0 +1
of Algorithm B. By induction, we have the following theorem.

Theorem 2 (Correctness of Emulation). Algorithm B correctly emulates in
G every phase in the execution of Algorithm A in G′. Each packet in Algorithm
B follows a path from its source to destination, hence Algorithm B solves routing
problem Qs without buffers.

Routing Time. Let rtB(Qs) be the routing time for Algorithm B to solve routing
problem Qs. Let ΦA(Q′) be the number of phases used by Algorithm A to solve
routing problem Q′. Since Algorithm B emulates Algorithm A phase for phase,
the number of phases of algorithm B is also ΦA(Q′). The routing time is therefore
given by ΦA · Σ · Tr. Since Tr = 4β2 + 4β, β = 6γ − 3 and Σ = 2� log δ 
, we
obtain:

Theorem 3 (Routing Time of Emulation). rtB(Qs) = Θ(ΦA(Q′)·γ2 ·log δ).

Since δ ≤ |E|/α = O(n2), from Theorem 3 we obtain an alternative upper bound
on the routing time: rtB(Qs) = O(ΦA(Q′) · γ2 · log n).

4 A Randomized Buffered Algorithm

We give a buffered algorithm that can be used to obtaining bufferless routing on
arbitrary networks. Since the per-node buffer size enters into the routing time
of the bufferless emulation, it is necessary to have buffered algorithms that limit
the amount of per-node buffering. We refer to this algorithm as Algorithm A1.

Algorithm A1 is a randomized routing algorithm for routing porblems with
simple paths, in arbitrary networks. Let Q′ = (G′, Π, P ′) be a routing problem
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Algorithm 1 Buffered Algorithm A1

1: Divide time into phases of length γ time steps.
2: for Each packet π do
3: π selects uniformly at random an injection phase φπ between phases 1 and

12C′/γ;
4: Packet π is injected at the first time step of phase φπ;
5: Packet π follows its path at the speed of one edge per phase;

with acyclic paths P ′ on an arbitrary graph G′ = (V ′, E′). Let C ′ be the node-
congestion and D′ the dilation. Let N be the number of packets and n′ the size
of V ′. Algorithm A1 uses buffers of size γ = 6 log(n′ + 2N).

We show that with high probability, Algorithm A1 succesfully routes the
packets, and at the same time satisfies the requirements in Section 3.1.

Theorem 4 (Routing Time of Algorithm A1). With probability at least 1−
O(1/(n′ +2N)), Algorithm A1 solves routing problem Q′ in at most 12C ′/γ +D′

phases. The node-buffer size required is γ = 6 log(n′ + 2N).

5 A Universal Bufferless Algorithm

We use buffered Algorithm A1 to construct bufferless Algorithm B1 for arbi-
trary networks. Algorithm B1 emulates Algorithm A1. The buffer size used by
algorithm A1 is γ = 6 log(n′ + 2N). Since n′ ≤ |E|/α, in order to guarantee
the existence of an [α, β]-partition, we assume that α ≤ |E|. Since α = 2γ, we
assume that 12 log(|E|/α + 2N) ≤ |E|. It is sufficient that 2N ≤ 2|E|/12 − |E|.

Suppose 2N ≤ 2|E|/12−|E|. Since n′ ≤ n2/2, γ ≤ 6 log(n2/2+2N), indepen-
dent of G′. Combining Theorems 3 and 4, and the fact that in the emulation,
ΦB1(Qs) = ΦA1(Q

′), we obtain that rtB1(Qs) = O((12C ′/γ+D′) · log δ · log2(n+
2N)). Using Lemma 1 and the facts that β ≤ 6γ and δ ≤ n′ = O(n2), we ob-
tain that rtB1(Qs) = O((C + D) · log n · log2(n + N)), with probability at least
1−O(1/(n′ + N)).

Consider now the case when 2N ≥ 2|E|/12 − |E|. We can send the N packets
of routing problem Qs on G to their destinations one after the other. Each
packet takes time O(D) to be delivered to its destination, and thus the total
routing time to send all the packets is O(DN). Clearly, C ≥ N/|E|, and thus
C ≥ (2|E|/12 − |E|)/2|E|. Since |E| = O(log(N)) and D ≤ |E|, the routing time
is ND ≤ CD|E| = O(C log2(N)). This simple algorithm can easily be converted
to a distributed algorithm with the same routing time.

Combining the above results for both cases of the number of packets, we
obtain the main result of this paper:

Theorem 5 (Routing Time of Buffereless Algorithm). rtB1(Qs) = O((C+
D) · log n · log2(n + N)), with probability at least 1−O(1/(n′ + N)).
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6 Discussion

We have presented a distributed algorithm for routing packets in bufferless net-
works. Our algorithm is based on the emulation of algorithms with buffers. We
partition the original graph into regions, and construct a respective region graph.
Each region serves the purpose of a buffer. We then consider an algorithm with
buffers on the region graph, and emulate this algorithm by circulating the pack-
ets in the regions, and thus avoiding the need of buffers. With this technique,
the resulting routing time of our algorithm is O

(
(C + D) · log3(n + N)

)
, which

is poly-logarithmic factors away from the optimal for the given paths.
For a particular (source-destination) routing problem, we can define the

bufferless competitive ratio as the ratio between the best possible routing time of
a bufferless algorithm and the best possible routing time of a buffered algorithm.
Our result shows that the bufferless competitive ratio is at most log3(n+N) for
any routing problem. A interesting open problem is to improve this bound.
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1 Department of Mathematical Sciences, George Mason University,
MS 3F2, 4400 University Drive, Fairfax, VA 22030

geir@math.gmu.edu
2 Department of Computer Science, University of Iceland,

Dunhaga 3, IS-107 Rvk, Iceland
mmh@hi.is

Abstract. A strong vertex coloring of a hypergraph assigns distinct col-
ors to vertices that are contained in a common hyperedge. This captures
many previously studied graph coloring problems. We present nearly
tight upper and lower bound on approximating general hypergraphs,
both offline and online. We then consider various parameters that make
coloring easier, and give a unified treatment. In particular, we give an
algebraic scheme using integer programming to color graphs of bounded
composition-width.

Keywords: hypergraph, strong coloring, approximation, composition
width.

1 Introduction

The purpose of this article is to discuss the properties of a special kind of vertex
coloring of hypergraphs, where we insist on vertices that are contained in a
common hyperedge receiving distinct colors. Such strong colorings capture a
number of graph coloring problems that have been treated separately before.

A hypergraph H = (V, E) consists of a finite set V = V (H) of vertices and a
collection E = E(H) ⊆ P(V ) of subsets of V . A strong coloring of H is a map
Ψ : V (H) → N such that whenever u, v ∈ e for some e ∈ E(H), we have that
Ψ(u) �= Ψ(v). The corresponding strong chromatic number χs(H) is the least
number of colors for which H has a proper strong coloring.

Strong coloring can be viewed as a regular vertex coloring problem of the
clique graph Gc(H) (also known as 2-section graph or representing graph [6]) of
the hypergraph H, defined on the same set of vertices, with edge set E(Gc(H)) =
{{u, v} : u, v ∈ e for some e ∈ E(H)}. In this way, χs(H) = χ(Gc(H)), the
ordinary chromatic number of the clique graph.

We consider both online and offline coloring algorithms. We analyze them
in terms of their competitiveness or approximation factor, respectively, which
in both cases is the maximum ratio between the number of colors used by the
algorithm on an instance to the chromatic number of the instance. In the stan-
dard online graph coloring problem, the graph is presented one vertex at a time
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along with edges only to the previous vertices. Each time the algorithm receives
a vertex, it must make an irrevocable decision as to its color.

Since the hypergraph H is our original input, we would like to use all the
associated parameters that come with it, and use those to either obtain an
optimal strong coloring or a good approximation. This is relevant because it is
often difficult to deduce the hypergraph from the graph representation, or to
find the ”best” such hypergraph. Finding the smallest clique hypergraph H that
is equivalent to a graph G, i.e. such that Gc(H) = G, is equivalent to finding
the smallest Clique Cover (GT 17: Covering by Cliques in [13]), which is hard
to approximate within n2−ε factor, for any ε > 0 [12].

One of the main objectives of this research is in opening a new line of research
by unifying several coloring problems as strong coloring appropriate types of hy-
pergraphs. We have gathered a host of results on these problems by modifying
and sometimes slightly extending previous results on graph coloring. Finally, we
have made the first step into a systematic treatment of parameters of hyper-
graphs and their clique graphs that make solution or approximation easier.

1.1 Instances of Strong Colorings Problems

Down-Coloring DAGs. Our original motivation to study strong hypergraph
colorings stems from a digraph coloring problem that occurs when bounding
storage space in genetic databases. A down-coloring of a DAG (acyclic digraph)
G is coloring of the vertices so that vertices that share a common ancestor re-
ceive different colors. One motivation for such a coloring (see [2]) is to provide
an efficient structure for querying relational tables referencing the digraph, in-
cluding the retrieval of rows in a given table that are conditioned based on sets
of ancestors from G.

For a DAG G, the binary relation ≤ on V (G) defined by u ≤ v ⇔ u = v,
or there is a directed path from v to u in G, is reflexive, antisymmetric, and
transitive, and is therefore a partial order on V (G). We denote by max{G} the
set of source vertices of G, i.e., the maximal vertices with respect to this partial
order ≤. For vertices u, v ∈ V (G) with u ≤ v, we say that u is a descendant
of v. The down-set D[u] of a vertex u ∈ V (G) is the set of all descendants
of u in G, that is, D[u] = {x ∈ V (G) : x ≤ u}. As defined in [3], the down-
hypergraph HG of a DAG G contains the same set of vertices with the down-
sets E(HG) = {D[u] : u ∈ max{G}} of sources of G as hyperedges. A down-
coloring of a digraph corresponds to a strong coloring of the corresponding down-
hypergraph.

Note that not all hypergraphs are down-hypergraphs of a DAG, but they are
easily recognized: We say that a hypergraph has the unique element property if
each hyperedge contains a vertex not contained in any other hyperedge. We can
observe that a hypergraph H is a down-hypergraph of some DAG iff H has the
unique element property [3].

Further properties between graphs, hypergraphs and the posets yielding them
can be found in [30], where the corresponding clique graph associated with the
poset is called an upper bound graph of the poset.
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Distance-2 Coloring Graphs. A distance-2 coloring of a graph is a vertex
coloring where vertices at distance two or less must receive different colors. This
problem has received attention for applications in frequency allocation [37, 26],
where two stations must use a different frequency if they are both to be able to
communicate with a common neighbor. Another application given in [29] relates
to the partition of the columns of a matrix for parallel solution so that columns
solved in the same iteration do not share a non-zero element in the same row.

The neighborhood hypergraph NG of a graph G consists of the same vertex
set with a hyperedge consisting of the closed neighborhood N [v] = {u : u =
v or {u, v} ∈ E(G)} of each vertex v ∈ V (G). A strong coloring of NG is equiv-
alent to a distance-2 coloring of G.

The distance-2 coloring problem is also equivalent to an ordinary coloring
problem on the square graph G2 of the graph G. The k-th power Gk of a graph
G is a graph on the same vertex set, with an edge between any pair of vertices
of distance at most k in G. The square graph is indeed the clique graph of the
neighborhood hypergraph. While it is easy to compute the power graph Gk from
G, Motwani and Sudan [34] showed that it is NP-hard to compute the k-th root
G of a graph Gk, for any k ≥ 2. On the other hand, it is not hard to deduce the
original graph when given its neighborhood hypergraph.

McCormick [29] was the first to show that the problem of coloring the power
of a graph is NP-complete, for any fixed power. He gave a greedy algorithm
with a O(

√
n)-approximation for squares of general graphs, which was matched

by the NP-hardness of an Ω(n1/2−ε)-approximation, for any ε > 0 [4]. Several
recent papers have studied distance-2 coloring planar graphs [26, 5], for which
the current best upper bound is 1.66Δ(G) + O(1) colors due to Molloy and
Salavatipour [33].

1.2 Related Coloring Results

The best current upper bound for approximating ordinary graph coloring is
O(n(lg lg n/ lg n)3) [15], while it is hard to approximate within n1−ε factor, for
any ε > 0 [7]. For a survey on graph coloring approximations, see [36].

The weak hypergraph coloring problem is an alternative generalization of the
graph coloring problem, where the vertices are to be colored so that no hyper-
edge is monochromatic. Several results are known about such approximations,
including a Ω(n1−ε) hardness [25].

Each color class in a strong coloring is called a strong independent set (strong
stable set). The k-set packing problem is equivalent to the strong independent
set problem in degree-k hypergraphs, by looking at the dual graph. This is NP-
hard to approximate within factor O(k/ lg k) [20]. This suggests, but does not
guarantee, that coloring degree-k hypergraphs is hard to do within an asymptotic
factor much smaller than k.

Strong coloring a hypergraph H is also equivalent to edge coloring the dual
hypergraph H∗. Kahn [23] showed that χ′(H) ≤ Δ + o(Δ), if no two hyper-
edges share many vertices. Further improvements were obtained by Molloy and
Reed [32].
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1.3 Overview of Paper

In the following section, we introduce the general version of the problem, which
involves multicolorings, where a set of colors is to be assigned to each vertex.
This follows naturally from some preprocessing of the hypergraph instance. In
Section 3, we consider several parameters of graphs and hypergraphs and analyze
their effect on approximability. In Section 4, we give bounds for online and offline
strong coloring algorithms on general graphs. Finally, in Section 5, we present
the technically most involved part of the paper, with a polynomial time coloring
algorithm for the class of k-composite graphs.

2 Hypergraph Contractions and Multicolorings

To describe the strong coloring problem in its full generality, we must introduce
multicolorings.

Multicoloring. For a simple graph G let ν : V (G) → N be a natural weight. By
a multicoloring of (G, ν), we mean an assignment c̃ : V (G) → P(N) to the power
set of N, such that (i) |c̃(u)| = ν(u) for each u ∈ V (G), and (ii) {u, v} ∈ E(G) ⇒
c̃(u) ∩ c̃(v) = ∅. The corresponding multichromatic number χ̃(G, ν) is then the
smallest k which allows a legitimate multicoloring c̃ : V (G) → P({1, . . . , k}).

In general, we may thus be given a weighted hypergraph, for which we seek
a strong multicoloring. This corresponds to a multicoloring of the clique graph,
whose weight function is identical to its corresponding hypergraph.

Contractions. One reason why it may be natural to generalize the problem
to multicolorings is to handle certain contractions, or operations that simplify
the instance. We consider particularly contractions that involve vertices with
identical neighborhoods.

A hypermodule is a set S of vertices that appear identical to vertices outside S,
i.e., for u ∈ V \ S and v, w ∈ S, then {u, v} ∈ E(Gc(H)) iff {u, w} ∈ E(Gc(H)).
A contraction takes a weighted hypergraph (H, ν) and a hypermodule S and
produces a smaller reduced hypergraph (H ′, ν′) where S has been replaced by
a single vertex of weight χ(Gc(H[S]), ν). One now can show that χs(H, ν) =
χs(H ′, ν′).

Furthermore, degrees in the reduced hypergraph are no greater than before:
for any vertex v we have dH′(v) ≤ dH(v). Thus, any result for approximation
or time complexity involving degrees, number of vertices, or number of edges,
carries over for the reduced hypergraph.

We may want to limit the kind of contractions that we seek. In particular,
within our context, it is natural to search for clique contractions, where the
clique graph Gc(H[S]) induced by S is a clique. In this case, degrees remain
unchanged.

Note that a set of vertices that are contained in exactly the same hyperedges
of H is a hypermodule that induces a clique in Gc(H). By viewing each such
hypermodule S of H as a single vertex uS , and connecting two such vertices if,
and only if, they are both contained in a common hyperedge of H, we obtain the
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reduced graph Gr(H). This reduced graph Gr(H) further has a natural weight
ν : V (Gr(H)) → N given by ν(uS) = |S|. Hence, H yields a corresponding
weighted reduced graph (Gr(H), | · |), something we will use in Section 5.

Hypergraph contraction preserves both chordality and perfectness. A poly-
nomial time algorithm for multicoloring perfect graphs was given by Grötschel,
Lovász, and Schrijver [8], under the problem name of weighted coloring.

3 Parameters of Graphs and Hypergraphs

The largest cardinality of a hyperedge of H will be denoted by σ(H) and the
largest cardinality of a hypermodule corresponding to a vertex of Gr(H) will be
denoted by μ(H). Clearly we have μ(H) ≤ σ(H).

Maximum Degree. For a vertex u ∈ V (H) of a hypergraph H, its degree
dH(u) is the number of hyperedges that contain the vertex u. Note that the
degree of u is usually much smaller than the number of neighbors of u (that is,
the number of vertices contained in a common hyperedge with u.) The minimum
(maximum) degree of a vertex in H is denoted by δ(H) (Δ(H)).

Hypergraphs of degree at most t have the property that their clique graphs
are (t+1)-claw free, i.e. contain no induced star on (t+2)-vertices. This ensures
that almost any coloring obtains a ratio of at most t, even online.

Call an online coloring algorithm frugal if it does not introduce a new color
unless it is forced to do so, i.e. if the corresponding vertex is already adjacent to
vertices of all other colors. The First-Fit algorithm is clearly frugal. An offline
algorithm is frugal if each vertex assigned a color i is adjacent to vertices of each
color 1, . . . , i− 1.

Lemma 1. Any frugal coloring algorithm is at most Δ(H)-competitive for the
clique graph of a hypergraph H.

Clique graphs of degree-2 hypergraphs contain the class of line graphs, and
thus strong coloring such hypergraphs subsumes the edge coloring problem of
multigraphs. This is hard to approximate within an absolute ratio of less than
4/3, but can be done using at most 1.1χ′(G) + 0.7 colors [35], where χ′ is the
edge chromatic number.

We can obtain an incomparable bound in terms of the maximum degree of
the clique graph, by extending an approach of [14] to multicolorings.

Theorem 1. Multicoloring can be approximated within �(Δ(G) + 1)/3
.
This uses the following specialization of a lemma of Lovász [27]. It can be im-
plemented in linear time [14] by first assigning the vertices greedily in order
to the color class to which they have the fewest neighbors, followed by local
improvement steps that move a vertex to a class with fewer neighbors.

Lemma 2. Let G be a graph and let t = �(Δ + 2)/3
. There is a partition of
V (G) into sets V1, . . . , Vt such that the graph G[Vi] induced by each Vi is of
maximum degree at most 2.
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Given the graphs of maximum degree 2 promised by the lemma, we can color
each of them optimally in linear time. (Details omitted.) Thus, we obtain a
t-approximation to the multicoloring problem.

For unweighted graphs, a better approximation bound of �(Δ + 1)/4
 can be
obtained [14], by using that graphs of maximum degree 3 can be colored opti-
mally by way of Brooks theorem. It, however, does not apply for multicolorings.

Inductiveness. By the inductiveness (or the degeneracy) of H, denoted by
ind(H), we mean the parameter defined by ind(H) = maxS⊆V (H) {δ(H[S])}.
Here, H[S], for a vertex subset S denotes the subhypergraph of H induced by S,
or the hypergraph with edge set E(H[S]) = {X∩S : X ∈ E(H) and |X∩S| ≥ 2}.
Recall that the inductiveness naturally relates to a greedy coloring of a graph
G that uses at most ind(G) + 1 colors (see [5]). The degree of a vertex v in
Gc(H) is at most (σ(H) − 1) times its degree in H. Thus, the observation of
[3] that ind(Gc(H)) ≤ ind(H)(σ(H) − 1). Hence, we have an ind(H)-factor
approximation by the greedy algorithm. For ordinary graphs, we can obtain a
simple contraction in the approximation by a factor of nearly 2. We observe here
that this holds also for multicolorings. The following observation is from [16].

Theorem 2. Suppose we are given a graph G with vertex weights w and a C-
coloring of G (i.e., a partition of the vertex set into independent sets). Then we
can approximate the multichromatic number within a factor of �C/2
.

Corollary 1. Multicoloring can be approximated within �(ind(G) + 1)/2
.
The inductiveness measure is useful for bounding the performance of online
algorithms. Irani [21] showed that the First-Fit coloring algorithm uses at most
O(ind(G) lg n) to color an n-vertex graph G.

Corollary 2. The First-Fit coloring algorithm is O(ind(H) lg n)-competitive for
coloring the clique graph of a hypergraph H.

Composition Width. First we define a modular decomposition [22], which is
also called substitution decomposition as in [31], and has been studied widely,
since it is by many considered one of three most important hierarchical graph
decomposition, the others being tree decomposition [38] and the graph decom-
position upon which clique-width is defined [11].

Definition 1. Let G be a graph with V (G) = {u1, . . . , uk} If G1, . . . , Gk are
graphs, then let G′ = G〈G1, . . . , Gk〉 denote the graph obtained by replacing each
vertex ui in G by the graph Gi, and connect each vertex in Gi to each vertex in
Gj if, and only if, ui and uj are connected in G′. In this case we say that G
is a modular decomposition of G1, . . . , Gk. The induced subgraphs Gi of G′ are
called modules of G′.

Definition 2. We call a graph G′ k-composite if it is a null graph, or recur-
sively, if there is a graph G on � ≤ k vertices and k-composite graphs G1, . . . , G�,
such that G′ = G〈G1, . . . , G�〉. The composition-width of G′, denoted cow(G′),
is the least k for which G′ is k-composite.
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Remarks: (i) Every null graph is 1-composite and every clique is 2-composite.
(ii) If G is k-composite, then G is k′-composite for each k′ ≥ k. (iii) Every graph
on n vertices is n-composite.

Clique-Width. By a labeled graph G we mean a graph G provided with a
labeling function ι : V (G) → N. Consider the following four graph operations,
introduced in [11]: (i) Create a new vertex u with a label i. (ii) Form the disjoint
union of labeled graphs G1 and G2, denoted by G1 ⊕ G2. (iii) Connect all i-
labeled vertices with all the j-labeled vertices, where i �= j (iv) Relabel all
vertices labeled i with the label j, where i �= j. The clique-width of a graph
G, denoted by cw(G) is the least number of labels needed so that G can be
constructed by the above four graph operations.

Observation 3. For a graph G we have cw(G) ≤ cow(G). If further cw(G) ∈
{1, 2} then we have cw(G) = cow(G).

Clique-width was first defined and studied in [11] and it generalizes the notion of
treewidth, introduced in [38], that is, a graph of bounded treewidth is necessarily
also of bounded clique-width [10], but not conversely since a clique of arbitrary
size has clique-width of two, while its treewidth is the number of vertices in the
clique.

Problems definable in a certain variations of Monadic Second Order Logic,
including maximum independent set, are solvable in polynomial time for graphs
of bounded clique-width [9]. However, graph coloring has been shown to be
not one of those (see [9]). Still, it has been shown that for a fixed k ∈ N, the
chromatic number of a graph G of clique-width of at most k, can be determined
in time O(23k+1k2n22k+1+1) [24]. This however depends on that the expression
that forms the graph using the four operations above is given.

4 Approximations for Down-Colorings

In this section we give bounds on the approximability of strong coloring general
hypergraphs. The O(

√
m)-approximation of strong independent sets of [18] leads

to an equivalent approximation of strong coloring. However, we here obtain a
bound on the inductiveness in terms of an arbitrary number m of edges, and
obtain an approximation in terms of σ(H), the largest hyperedge size.

Theorem 4. For a hypergraph H with m edges, ind(Gc(H)) ≤ √mσ(H).

Proof. Let k =
√

m. Let S be a vertex subset inducing a subgraph of Gc(H)
of minimum degree ind(Gc(H)). Let H[S] be the subgraph of H induced by S,
and let mS be the number of hyperedges in it. If there is a vertex of degree
at most k in H[S], then its degree in Gc(H[S]) (which is at least ind(Gc(H))
is at most kσ(H), in which case the theorem follows. Otherwise, each vertex
is of degree at least k and the number of edge-vertex incidences is at least
k|S|. It follows that the average edge size in H[S] is at least k|S|/mS , and thus
σ(H) ≥ k|S|/mS ≥ k|S|/m = |S|/k.
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Now, since the inductiveness of Gc(H) is equal to the minimum degree of
Gc(H[S]) which has at most |S| vertices, we have that ind(Gc(H[S])) ≤ |S|−1 <
σ(H) · k and the theorem follows.

Corollary 3. There is a greedy algorithm that approximates the strong coloring
of hypergraphs within a factor of

√
m. This yields a

√
M approximation for the

down-coloring of DAGs, where M = |max{G}| is the number of source vertices
in G.

Observe that we bounded the number of colors used by the algorithm in terms
of the maximum edge size σ(H). Thus, we have shown that the strong chromatic
number of a hypergraph H differs from σ(H) by a factor of at most

√|E(H)| =√
m. In terms of down-graphs and hypergraphs, we obtain the following bound.

Corollary 4. χ(Gc(HG)) = χs(HG) ≤
√
|max{G}| · σ(HG) ≤ √n · σ(HG).

Compare the above corollary with [3 Obs. 2, p. 306], which shows that the
bounds given can be obtained.

4.1 Approximation Hardness

We now give a reduction from the ordinary coloring problem that shows that the
approximation of the greedy algorithm is close to best possible. The Ω(n1/2−ε)-
hardness result for distance-2 coloring of [4] already yields the same hardness for
strong coloring hypergraphs with n vertices and n edges. We show here similar
result for down-hypergraphs and restricted types of DAGs.

Given a graph G0, we construct a DAG G of height two by letting V (G) =
E(G0)∪V (G0) and E(G) = {(e, v) : v ∈ e, v ∈ V (G0), e ∈ E(G0)}. The digraph
has a source vertex for each edge in G0, a leaf vertex for each node in G0, and
an edge from a source to a leaf if the leaf corresponds to a vertex incident on
the edge corresponding to the source vertex.

Let H = HG be the corresponding down-hypergraph. Note that the subhyper-
graph H[V (G0)] induced by the leaves is a graph and is exactly the graph G0. The
source nodes of H induce an independent set. Thus, χ(G0) ≤ χs(H) ≤ χ(G0)+1.
In fact, χs(H) = χ(G0) if χ(G0) ≥ 3. By the results of Feige and Kilian [7], the
chromatic number problem cannot be approximated within a factor of |V (G)|1−ε,
for any ε > 0, unless NP ⊆ ZPP, i.e. unless there exist polynomial-time random-
ized algorithms for NP-hard problems. Here, we have |V (G0)| = Ω(

√|V (H)|)
and hence the following.

Theorem 5. It is hard to approximate the down-coloring of DAGs within a
factor of n1/2−ε, for any ε > 0. This holds even for digraphs of height two.

We may now ask if it is possible to give a better approximation for important
special cases of the down-coloring problem. In particular, digraphs arising from
pedigrees (i.e. records of ancestry for people) have some special properties; in
particular, each vertex has in-degree at most 2, and normally a fairly small out-
degree. We can show that even in this case, we cannot do better. (Proof omitted.)

,
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Theorem 6. It is hard to approximate the down-coloring of DAGs within a
factor of n1/2−ε, for any ε > 0, even when restricted to DAGs of in-degree and
out-degree two.

4.2 Online Coloring

In the standard online graph coloring problem, the graph is presented one vertex
at a time along with edges only to the previous vertices. Each time the algorithm
receives a vertex, it must make an irrevocable decision as to its color [19, 17].

The hypergraph model might lead to a different model, e.g. where all the
vertices contained in edges incident on previous vertices are given. It can be
inferred from the arguments below that this does not produce a great advantage.

Applying the result of Irani cited earlier, we obtain the following upper bound
for online coloring.

Corollary 5. First-Fit is O(
√

m lg n)-competitive for the clique graph of a hy-
pergraph H with m edges and n vertices. More generally, it is O(

√
m lg n)-

competitive for graphs that can be covered with m cliques.

In the case of distance-2 coloring, one can argue a better bound. Namely,
let G be the underlying graph and HG be its neighborhood hypergraph. Then,
Δ(H) = Δ(G) + 1 and σ(H) = Δ(G). Thus, the competitive ratio of any any
frugal online coloring algorithm is at most min(Δ(H), n/σ(H)) ≤ √n.

Proposition 1. Any frugal online coloring algorithm is
√

n-competitive for the
distance-2 coloring graphs.

On the hardness side, lower bounds for online graph coloring carry over for
clique graphs, simply by viewing the graphs as hypergraphs. Halldórsson and
Szegedy [19] showed that for any online algorithm, there is a lg n-colorable graph
on n vertices for which the algorithm uses Ω(n/ lg n) colors. This holds also for
randomized algorithms against an oblivious adversary. This was later extended
to a known graph model, where a graph isomorphic to the (fixed) input graph
is given in advance [17]. Thus, there is one particular graph that is hard for
any online coloring algorithm. By padding this graphs with isolated vertices (or
small cliques), we can have this hold for graphs of any density.

Lemma 3. For any n and m, there is a particular graph with n vertices and at
most m cliques such that any online coloring algorithm is at least Ω(

√
m/ lg2 m)

competitive.

5 Multicoloring, an Algebraic Approach

In this section we will consider an algebraic approach to determine the strong
chromatic number of a given hypergraph by using integer programming. We
then show how the same method can recursively yield an improved poly-time
algorithm to obtain an optimal coloring for k-composite graphs.
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Observation 7. For a hypergraph H and its weighted reduced graph (Gr(H),
| · |), we have χs(H) = χ̃(Gr(H), | · |).
Here we view a given hypergraph H as weighted graph (Gr(H), | · |), since by
Observation 7 we have χs(H) = χ̃(Gr(H), | · |). Hence, we will here consider
multicolorings of a weighted graph (G, ν), where ν : V (G) → N is a natural
weight.

Consider our weighted graph (G, ν) where V (G) = {u1, . . . , uk}. Let G′ =
G〈Q1, . . . , Qk〉 be the modular decomposition of the cliques Q1, . . . , Qk, where
each Qi has ν(ui) vertices. Clearly we have that χ̃(G, ν) = χ(G〈Q1, . . . , Qk〉),
and so the computation of χ̃(G, ν) can be trivially reduced to the computation
of the chromatic number of a graph G′. However, taking further into the account
the structure of G〈Q1, . . . , Qk〉, we can shorten the computations considerably,
especially when the ν(ui)’s are large compared to k. We proceed as follows:

For each proper (i.e. nonempty) independent set I ⊆ V (G) we form a variable
xI . We denote by I(G) the set of all independent sets of G, and for each u ∈ V (G)
we denote by I(G; u) ⊆ I(G) the set of all independent sets of G that contain
the vertex u. For each u ∈ V (G) we form the following constraint∑

I∈I(G;u)

xI = ν(u). (1)

Let us fix a listing of the elements of I(G): For an ordering V (G) = {u1, . . . , uk},
note that each U = {ui1 , . . . , ui�

} yields a word U �→ word(U) = ui1 · · ·ui�
, and

hence the sets of V (G) can be ordered lexicographically, viewing u1, . . . , uk as an
ordered alphabet. We now can list the elements of P(V (G)) degree lexicographi-
cally, or by deglex in short, in the following way [1]:

U1 < U2 ⇔
{ |Ul| < |U2| or
|Ul| = |U2| and word(U1) < word(U2) lexicographically. (2)

With the deglex ordering (2), we can form the |I(G)|-tuple x of the variables xI ,
and the constraints from (1), determined by the k vertices of G, can be written
collectively as A(G) ·x = n, where n = (ν(u1), . . . , ν(uk)) and A(G) is a uniquely
determined |I(G)| × k matrix with only 0 or 1 as entries. Note that the sum Σ
of all the variables xI can be given by the dot-product Σ = 1 · x, where 1 is the
|I(G)|-tuple with 1 in each of its entry.

Theorem 8. For an integer weighted graph (G, ν) the multichromatic number
χ̃(G, ν) is given by the integer program

χ̃(G, ν) = min{1 · x : A(G) · x = n, x ∈ (N ∪ {0})|I(G)|}, (3)

where A(G) is uniquely determined by (1) and (2), and n = (ν(u1), . . . , ν(uk)).

It is well-known that the problem of solving an integer programming prob-
lem as (3) is NP-complete. However, considering the complexity in terms of
n =
∑

u∈V (G) ν(u) (which corresponds to the number of vertices in the original
hypergraph H) and assuming that k = |V (G)| is fixed and “small” compared to
n, it is worthwhile to discuss complexity analysis.
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Lemma 4. A connected graph G on k vertices has at most 2k−1 proper inde-
pendent sets.

By Lemma 4 the number of variables xI in x is at most 2k−1. Note also that
by our deglex ordering, A(G) is already in reduced row echelon form with its
first k× k submatrix being the k× k identity matrix Ik. If N = maxu∈V (G) ν(u),
then clearly each optimal solution x must satisfy 0 ≤ xI ≤ N for each I ∈ I(G).
Hence, we have at most 2k−1 − k free variables xI in x, namely those xI with
|I| ≥ 2, each taking value in {0, 1, . . . , N}. We now make some rudimentary
computational observations, which are asymptotically tight for general G:

To check whether a set of i vertices is independent or not, we need
(

i
2

)
edge-

comparisons. Hence, I(G) can be obtained by at most
∑k

i=1

(
k
i

)(
i
2

)
= k(k −

1)2k−3 comparisons. Having I(G), to determine I(G; u) for each u ∈ V (G)
we need at most k2k−1 operations. In all, determining the linear program (3)
we need at most k(k − 1)2k−3 + k22k−1 < k22k operations. Further, for each
given value of x, the expressions A(G) · x and 1 · x can be evaluated in at most
k2k−1 + 2k−1 < k2k steps. Hence, we have the following.

Observation 9. For a connected integer weighted graph (G, ν) with |V (G)| = k
and N = maxu∈V (G) ν(u), an optimal χ̃(G, ν)-multicoloring can be obtained by
k2k(k + (N + 1)2

k−1−k) operations, or in O(k2k(N + 1)2
k−1−k) time for k fixed.

With the notation from previous Section 2 we therefore have the following for a
hypergraph.

Corollary 6. For a hypergraph H with its reduced graph Gr(H) on k ver-
tices, the complexity of obtaining an optimal strong χs(H)-coloring is given by
O(k2k(μ(H) + 1)2

k−1−k).

Note that our complexities are polynomial expressions, only because we assume
k to be fixed here.

We conclude this section by considering the complexity of obtaining an opti-
mal coloring of a k-composite graph by using the integer program (3) recursively.
The following is clear.

Proposition 2. Let k ∈ N be given. The chromatic number χ(G′) of a k-
composite graph G′ = G〈G1, . . . , G�〉 where � ≤ k, is given by χ(G′) = χ̃(G, ν),
where the integer weight ν : V (G) → N is given by ν(ui) = χ(Gi) for each
i ∈ {1, . . . , �}.
By Observation 9 we can obtain a χ(G)-coloring by at most k2k(k + (N +
1)2

k−1−k) operations, or in O(k2k(N + 1)2
k−1−k) time, where N = maxi χ(Gi),

provided that we have an optimal coloring for each of the Gi’s. If that is not the
case however, we proceed recursively, but with more care, since we need at this
point to keep track of the actual upper bound of arithmetic operations when
applying the recursion. For a rooted tree (T, r) let Tu be the subtree rooted at
u ∈ V (T ).
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Lemma 5. Let (T, r) be a rooted tree with n leaves, where each internal node
has at least two children. If f : N → R is positive and non-decreasing, then

∑
u∈V (T )

f(|V (Tu)|) ≤ Sf (n) := (n− 1)f(1) +
n∑

i=1

f(i).

Remark: The bound of Sf (n) from Lemma 5 is tight: Consider the degenerate
binary tree T on 2n− 1 vertices and n leaves, where each internal vertex has a
leaf as a left child. In this case we have for any f that

∑
u∈V (T ) f(|V (Tu)|) =

(n− 1)f(1) +
∑n

i=1 f(i) = Sf (n).
An upper bound of the number of arithmetic operations need to obtain an

optimal χ(G′)-coloring of a k-composite graph G′, can now be obtained from the
weighted rooted module tree (TG′ , | · |) of G′ by

∑
u∈V (TG′ ) f(w(uG′′)), where

each vertex uG′′ corresponds to an induced subgraph (strong module) G′′ of
G′, and w(uG′′) = |V (G′′)|, and the function f from Observation 9 is f(n) =
k2k(k + (n + 1)2

k−1−k), since N = max1≤i≤k χ(Gi) ≤
∑k

i=1 |V (Gi)| = n.

Theorem 10. Provided the modular decompositions defining the k-composite
connected graph G on n vertices are given, the number of arithmetic operations
needed to obtain an optimal χ(G)-coloring is k22k−1+1n+4k(n+2)2

k−1−k+1 and
hence can be obtained in O(kn2k−1−k+1) time, for k fixed.

As mention above, the chromatic number of a connected graph G on n vertices of
clique-width at most k, can be computed in O(23k+1n22k+1+1) time [24], provided
that the corresponding k-expression for G is given. By Observation 3 that also
holds for k-composite graphs as well. However, the bound given in Theorem 10
is considerably better than the mentioned bound from [24]. In addition, it is not
known, for k ≥ 4, whether there exists a polynomial time algorithm to obtain a
k-expression for a graph G of clique-width at most k.

For a graph G′ known to have a module decomposition, a strong modular
decomposition (where the modules do not have a nonempty intersection) which is
unique, can be computed in O(n2) time, since such a decomposition of a graph is
a special case of a modular decomposition a 2-structure (a slightly more general
concept than a graph) [22]. However, in such a strong module decomposition
G′ = G〈G1, . . . , G�〉 it could be that � > k. But, if it is known that G′ is k-
composite, then the union of some of the strong modules G1, . . . , G� will make
a single module of G′. To check this is the same as to check for modules in G,
which will take at most O(n2) time as well. Hence, the module decomposition
of G′ constituting a k-decomposition will take at most O(n2) time at each step,
which is much less than f(n) from above, right before Theorem 10. Therefore,
unlike for graphs of clique-width of k or less, we have the following corollary of
Theorem 10, where we do not assume the modular k-decomposition.

Corollary 7. The complexity of obtaining an optimal coloring for a k-composite
graph on n vertices is O(kn2k−1−k+1).

Note: A few words of warning are in order. If we do not have the modular
decompositions, then we do need to compute the k-decomposition at each step
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of the recursive definition of a k-composite graph. A priori it could look as if the
constant hidden in the O(n2) term might affect the overall complexity. However,
a rooted tree with n leaves and no degree-2 internal vertex has at most 2n − 1
vertices. So, the overall computation is at most (2n− 1)O(n2) = O(n3) which is
dominated by the expression in Theorem 10.
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Abstract. We consider the problem of designing monotone determini-
stic algorithms for scheduling tasks on related machines in order to mini-
mize the makespan. Several recent papers showed that monotonicity is a
fundamental property to design truthful mechanisms for this scheduling
problem.

We give both theoretical and experimental results. For the case of
two machines, when speeds of the machines are restricted to be powers of
a given constant c > 0, we prove that algorithm Largest Processing
Time is monotone for any c ≥ 2 while it is not monotone for c ≤ 1.78;
algorithm List Scheduling, instead, is monotone only for c > 2.

For the case of m machines we restrict our attention to the class of
“greedy-like” monotone algorithms defined in [AP04]. We propose the
greedy–like algorithm Uniform RR and we prove that it is monotone
when speeds are powers of a given integer constant c > 0 and it ob-
tains an approximation ratio that is not worse than algorithm Uniform,
proposed in [AP04]. We also experimentally compare performances of
Uniform, Uniform RR, LPT, and several other monotone and greedy–
like heuristics.

1 Introduction

In this paper we consider the problem of designing deterministic monotone al-
gorithms for scheduling tasks on related machines in order to minimize the
makespan (i.e. the maximum completion time). A classical result of game theory,
recently rediscovered by [AT01], states that monotonicity is a necessary condi-
tion to design truthful (dominant strategies) mechanisms for this scheduling
problem. Mechanisms are a classical concept of the theory of non-cooperative
games [OR94]. In these games there are several independent agents that have
to work together in order to optimize a global objective function. However, each
player has its own private valuation function, maybe different from the global
objective function, and may lie if this can improve its valuation of the game
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output, even though this can produce a suboptimal solution. Non-cooperative
games can be used to model problems that have to be solved in market environ-
ments where heterogenous entities have to cooperate in computing some global
function but they compete for “resources” (e.g. the autonomous systems that
regulate the routing of traffic in Internet) [Pa01].

The main idea of the Mechanism Design theory is to pay the agents to con-
vince them to perform strategies that help the system to optimize the global
objective function. A Mechanism M=(A,P) is a combination of two elements:
an algorithm A computing a solution and a payment function P specifying the
amount of ”money” the mechanism should pay to each agent. A mechanism is
Truthful with Dominant Strategies (in the sequel simply truthful) if its payments
guarantee that agents are not stimulated to lie, whatever strategies other agents
perform.

Recently, mechanism design has been applied to several optimization prob-
lems arising in computer science and networking that have been (re-)considered
in the context of non-cooperative games [NR99, Ro00, Pa01].

State of the Art. The celebrated VCG mechanism [Cl71, Gr73, V61] is the promi-
nent technique to derive truthful mechanisms for optimization problems. How-
ever, this technique applies only to utilitarian problems, that are problems where
the objective function is equal to the sum of the agents valuation functions (e.g.,
shortest path, minimum spanning tree, etc.). In the seminal papers by Nisan and
Ronen [NR99, NR00] it is pointed out that VCG mechanisms do not completely
fit in a context where computational issues play a crucial role since they assume
that it is possible to compute an optimal solution of the corresponding optimiza-
tion problem (maybe a NP-hard problem). Scheduling, is a classical optimization
problem that is not utilitarian, since we aim at minimizing the maximum over
all machines of their completion times and it is NP-Hard. Moreover, scheduling
models important features of different allocation problems and routing problems
in communication networks. Thus, it has been the first problem for which not
VCG based techniques have been introduced.

Nisan and Ronen [NR99, Ro00] give an m-approximation truthful mechanism
for the problem of scheduling tasks on m unrelated machines, when each machine
is owned by a different agent that declares the processing times of the tasks
assigned to his/her machine and the algorithm has to compute the scheduling
based on the values declared by the agents. In [AT01] it is considered the simpler
variant of the task scheduling on related machines (in short Q||Cmax), where each
machine i has a speed si and the processing time of a task is given by the ratio
between the weight of the task and the speed of the machine. They show that
a mechanism M = (A, P ) for the Q||Cmax problem is truthful if and only if
algorithm A is monotone. Intuitively, monotonicity means that increasing the
speed of exactly one machine does not make the algorithm decrease the work
assigned to that machine (see Section 2 for a formal definition). The result of
[AT01] reduces the problem of designing a truthful mechanism for Q||Cmax to
the algorithmic problem of designing a good algorithm which also satisfies the
additional monotonicity requirement.
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Several algorithms are known in literature for Q||Cmax, but most of them
are not monotone. Greedy algorithms were proposed by Graham in the ’60s for
the case of identical machines. He proves that algorithm LPT, which considers
the tasks in non-increasing order by weight, is (4/3 − 1/(3m))-approximated
[Gr69], while algorithm List Scheduling, which considers tasks in the same
order as given in input, is (2 − 1/m)–approximated [Gr66]. Moreover, a PTAS
can be constructed using LPT as a subroutine [Gr69]. The same algorithms can
be used for Q||Cmax. In particular, LPT is φ-approximated for two machines,
where φ = 1+

√
5

2 is the golden ratio, and 2m
m+1–approximated for m machines

[GI80]. LS, instead, is O(log m)–approximated [AA+93, CS80]. However, both
these algorithms are not monotone [AT01]. Not greedy techniques have been
used to provide a PTAS for Q||Cmax [HS88] and constant approximations for
the online version of the problem [AA+93, BC97]. However, all these algorithms
are intrinsically not monotone.

The first non-trivial monotone algorithm for Q||Cmax is given in [AT01],
where a randomized 3-approximated mechanism for Q||Cmax is presented that
is truthful in expectation. In [AP04] a technique is provided to construct a
family of (2 + ε)-approximated monotone algorithms starting from a monotone
allocation algorithm that is “greedy–like” (i.e. its cost is within an additive
factor of O(tmax/s1) from the cost of LPT, where tmax is the largest task weight
and s1 is the smallest machine speed). The basic idea, derived by the PTAS
of Graham, is to combine the optimal scheduling of the largest tasks with the
schedule computed by a monotone “greedy–like” algorithm; however, in order to
guarantee monotonicity, the scheduling of the large tasks and of the small tasks
are computed independently. In [AP04] it is proposed the algorithm Uniform,
which is greedy–like and it is monotone in the particular case where machine
speeds are divisible (see Section 2 for a formal definition). Thus, they obtain a
family of deterministic truthful (2+ε)-approximated mechanisms for the case of
divisible speeds. This result, combined with payment functions of [AT01], implies
the existence, for any fixed number of machines and any ε > 0, of deterministic
truthful (4 + ε)-approximated mechanisms for the case of arbitrary speeds.

Our Results. In [AP04] two questions are left open. The first one is whether LPT
is monotone in the particular case of divisible speeds; the second one is whether
the algorithm Uniform is monotone also in the case of arbitrary speeds.

In this paper we try to answer to both the questions. With respect to the
first question we give answers only for the case of 2 machines (see Section 3). We
say that speeds are c–divisible if and only if they are powers of a given positive
constant c. We prove that LPT is monotone for c–divisible speeds when c ≥ 2
while it is not monotone when c ≤ 1.78. We also prove that LS is monotone
if c > 2. With respect to the second question, we prove that any “Uniform–
like” algorithm is not monotone when speeds are not-divisible. It is possible
to modify the algorithm to obtain monotonicity but this implies a much weaker
approximation factor. We also describe a new algorithm Uniform RR, based on
Uniform, and prove that it is more efficient than Uniform and it is monotone
for divisible speeds (see Section 4).
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We experimentally evaluate the performances of algorithms Uniform and
Uniform RR, comparing it to LPT and to several other “Uniform–like” heuris-
tics. The experiments show that algorithm Uniform RR outperforms the other
considered heuristics both with respect to the worst case and the average case
approximation factor and it is very close to LPT.

2 The Problem

In this section we formally define the Q||Cmax problem. Consider m machines
having speeds s = 〈s1, s2, . . . , sm〉, with s1 ≤ s2 ≤ . . . ≤ sm, and n tasks of
weights σ = (t1, t2, . . . , tn). In the sequel we simply denote the i-th task with its
weight ti. A schedule is a mapping that associates each task to a machine. The
amount of time to complete task j on machine i is tj/si. The work of machine i,
denoted as wi, is given by the sum of the weights of the tasks assigned to i. The
load (or completion time) of machine i is given by wi/si. The cost of a schedule
is the maximum load over all machines, that is, its makespan.

Given an algorithm A for Q||Cmax, A(σ, s) = (A1(σ, s), A2(σ, s), · · · , Am(σ, s))
denotes the solution computed by A on input the task sequence σ and the speed
vector s, where Ai(σ, s) is the load assigned to machine i. The cost of this so-
lution is denoted by Cost(A, σ, s). In the sequel we omit σ and s every time it
is clear from the context. Following the standard notation of game theory, we
denote by s−i = (s1, s2, · · · , si−1, si+1, · · · , sm) the vector of the speeds of all
machines except machine i and we write s = (s−i, si).

Definition 1 (Monotone Scheduling Algorithms). A scheduling algorithm
A is monotone iff for any machine i, fixed the speeds of the other machines s−i,
the work assigned to machine i is not decreasing with respect to si, that is for
any s′

i > s′′
i it holds that wi(s−i, s

′
i) ≥ wi(s−i, s

′′
i ).

An optimal algorithm computes a solution of minimal cost opt(σ, s). Through-
out the paper we assume that the optimal algorithm always produces the lexi-
cographically minimal optimal assignment. As shown in [AT01], this algorithm
is monotone.

An algorithm A is a c-approximation algorithm if, for every instance (σ, s),
Cost(A, σ, s) ≤ c ·opt(σ, s). A polynomial-time approximation scheme (PTAS)
for a minimization problem is a family A of algorithms such that, for every ε > 0
there exists a (1 + ε)-approximation algorithm Aε ∈ A whose running time is
polynomial in the size of the input.

Largest Processing Time (LPT) and List Scheduling (LS) are two
greedy algorithms widely used for Q||Cmax. LPT first sorts the tasks in nonin-
creasing order by weight and then process them assigning task tj to machine i
that minimizes (wi + tj)/si, where wi denotes the work of machine i before task
tj is assigned; if more than one machine minimizing the above ratio exists then
the machine with small index is chosen. LS uses the same rule as LPT to assign
tasks to machines, but it processes the tasks in the same order as they appear
in σ. For any fixed number of machines, there exists a PTAS for Q||Cmax that
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assigns the h largest tasks optimally, for h large enough, and the remaining tasks
with LPT [Gr69].
We say that a scheduling algorithm A is greedy-close if for any speed vector s
and for any task sequence σ we have that Cost(A, σ, s) ≤ Cost(LPT, σ, s) +
O
(

tmax

s1

)
, where tmax is the largest task of σ and s1 is the smallest speed in

s. In [AP04] the monotone scheduling algorithm PTAS-Gc is provided that
uses a greedy-close algorithm Gc as a subroutine. This algorithm splits the task
sequence in two parts: the h largest tasks are scheduled optimally; the remaining
tasks are scheduled by Gc, independently from the schedule obtained in the first
two phases. They prove that for any sequence of tasks and for any ε > 0 there
exists an integer h > 0 such that PTAS-Gc gives a solution that is within a
factor of (2 + ε) from the optimum.

We say that speeds of the machines are c–divisible, for any constant c > 0,
if and only if each speed is a power of c. We say that the Q||Cmax problem
is restricted to c–divisible speeds if speeds are c–divisible and each agent can
declare only values that are powers of c.

3 Scheduling on Two Machines with c–Divisible Speeds

In this section we consider the case of two machines with c–divisible speeds and
give upper and lower bounds on the values of c that guarantee the monotonicity
of algorithms LPT and LS.

We start by proving two interesting properties of the schedules computed by
LPT. The first lemma proves that the scheduling computed by LPT is such
that if a task assigned to a machine (say i) is moved to another machine then it
has a completion time that is not smaller than its completion time on machine
i. This property, known as a Nash Equilibrium, is very important in the context
of dynamic systems since it implies that the system is in a stable state and no
entity has an incentive to move from its state.

Lemma 1. Let w1, w2, · · · , wm be the works assigned to the machines by LPT.
For each task t, let i(t) be the machine which t is assigned to. Then, for each
1 ≤ j ≤ m, it holds that wj+t

sj
≥ wi(t)

si(t)
.

Lemma 2. For each speed vector s and for each sequence of tasks σ, the schedule
computed by LPT on input s and σ is such that for any i, j, if si ≤ sj/2 then
wi ≤ wj, where wi is the work assigned by the algorithm to machine i.

Let c(A) > 0 be the smallest real number such that for each c ≥ c(A) the algo-
rithm A is monotone when restricted to c–divisible speeds. We briefly describe
now the argument that we use to lower bound c(A). Consider two speed vectors
s = 〈s1, s2〉 and s′ = 〈s′

1, s
′
2〉, where s′ differs from s only on speed of machine i

and si ≤ s′
i. For each sequence of tasks σ = 〈t1, t2, · · · , tn〉, we divide the tasks in

σ in the following four sets with respect to the allocations computed by A with
respect to s and s′: Ti(σ), for i = 1, 2, is the set of tasks of σ that are assigned
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to machine i both with respect to s and s′; L(σ) is the set of tasks of σ that
are assigned to machine 1 with respect to s and to machine 2 with respect to
s′; R(σ) is the set of tasks of σ that are assigned to machine 2 with respect to
s and to machine 1 with respect to s′. In the following we omit the argument σ
whenever it is clear from the context. It is easy to see that

w1(s) =
T1 + L

s1
, w2(s) =

T2 + R

s2
, w1(s′) =

T1 + R

s′
1

, w2(s′) =
T2 + L

s′
2

.

(1)

Theorem 3. For any c ≥ 2, the algorithm LPT is monotone when restricted
to the case of two machines with c–divisible speeds.

Proof. Suppose by contradiction that LPT is not monotone for c–divisible speeds.
Then, there exist two speed vectors s = 〈s1 ≤ s2〉 and s′ = 〈s′

1 ≤ s′
2〉, where

s′ has been obtained from s by increasing only one speed, and a sequence of
tasks σ = 〈σ′, t〉 such that the scheduling of the tasks in σ computed by LPT
with respect to s and s′ is not monotone. Without loss of generality assume that
σ is the shortest sequence that LPT schedules in a not monotone way. This
means that the schedule of σ′ is monotone while the allocation of t destroys the
monotonicity. We distinguish three cases.

First of all, consider the case s′
2 ≥ c · s2. Since, by hypothesis, the schedule of

σ′ is monotone while the schedule of σ is not monotone we have that w2(σ′, s) ≤
w2(σ′, s′) and w2(σ, s) > w2(σ, s′). By Eq. 1 it follows that

R(σ′) ≤ L(σ′) < R(σ′) + t. (2)

Observe now that if LPT on input s assigns task t to machine 2 then T1(σ′)+L(σ′)+t
s1

> T2(σ′)+R(σ′)+t
s2

, from which we obtain

T2(σ′) <
s2

s1
(T1(σ′) + L(σ′) + t)−R(σ′)− t. (3)

Similarly, if LPT on input s′ assigns task t to machine 1 then T1(σ′)+R(σ′)+t
s′
1

≤
T2(σ′)+L(σ′)+t

s′
2

, from which we obtain

T2(σ′) + L(σ′) + t ≥ s′
2

s1
(T1(σ′) + R(σ′) + t) (4)

Substituting Eq. 3 in Eq. 4 and making some algebraic manipulations we obtain
that

L(σ′) ≥ s′
2

s1
(T1(σ′) + R(σ′) + t)− T2(σ′)− t

≥ s2

s1
T1(σ′) +

s2

s1
(2R(σ′)− L(σ′)) + t(

s2

s1
− 1) + (R(σ′) + t)

≥ (R(σ′) + t)
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where the last inequality holds since by hypothesis s2
s1
≥ 1 and, since t is the

smallest task, R(σ′) ≥ L(σ′)/2. However, this contradicts Eq. 2 and therefore
there is no instance σ for which the schedule computed by LPT is not monotone.
The other two cases can be solved by reduction to the previous case.

A similar argument can be used to prove the following theorem.

Theorem 4. For any c > 2, the algorithm LS is monotone when restricted to
the case of two machines with c–divisible speeds.

Intuitively, Theorem 3 states that LPT is monotone if a machine that wants
to reduce its speed has to do it in a significant way (at least half in this case).
It is interesting to study which is the value of c(LPT). Next Lemma gives a
constructive lower bound on this value.

Lemma 5. For any c ≤ 1.78, the restriction of LPT to two machines and c–
divisible speeds is not monotone.

Proof. Consider the sequence of tasks σ = 〈y ≥ x ≥ x/2 + 2ε ≥ x/2 − ε〉 and
the speed vectors s = 〈1, c〉 and s′ = 〈1, c2〉. Assume that x, y and ε are chosen
in such a way that LPT, on input s, assign all tasks except for x to machine 2,
while, on input s′ it assigns the first two tasks to machine 2 and the other tasks
to machine 1. Clearly, this schedule is not monotone since machine 2 receives a
total load of y + x + ε with speed c and a total load of x + y with speed c2. We
observe that LPT produces the previous schedules when

y + x

c
> x,

y + x + ε

c
<

3
2
x− ε (5)

and
y + x

c2 < x,
y + x + x/2− ε

c2 > x + ε. (6)

By trivial computations it can be seen that for any c ≤ 1.78 it is possible to
choose y, x and ε so that previous inequalities hold. In particular, for c = 1.78
we can take y = 113.5, x = 68, ε = 0.005.

The argument of the proof of Lemma 5 cannot be extended since for any c ≥
3+

√
17

4 it is not possible to choose y, x and ε in order to satisfy Eq. 5–6.

4 Algorithms Uniform–Like

In this section we prove that algorithm Uniform, proposed in [AP04], is not
monotone with respect to not divisible speeds. In the sequel we assume that
machine speeds are positive integers.

Algorithm Uniform works in two phases: first it uses LPT as a subroutine
to compute a schedule of the tasks to S =

∑m
i=1 si identical “virtual machines”;

then, it assigns to each real machine i the work assigned to si virtual machines
in such a way that each virtual machine is assigned to only one real machine. To
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guarantee the monotonicity of Uniform the mapping of the virtual machines
to the real machines is such that w1/s1 ≤ w2/s2 ≤ · · · ≤ wm/sm. In particular,
Uniform partitions the virtual machines into g blocks of the same size, where
g is equal to GCD(s1, s2, . . . , sm), in such a way that each virtual machine of
block i has a work greater than any other machine in a block j < i. Finally, for
each block i, for i = 1, 2, · · · , m, it assigns si/g consecutive virtual machines to
the real machine i, starting from the virtual machine with less work.

In [AP04] it is proved that Uniform is greedy-close and it is monotone in the
particular case of divisible speeds. It is left open the question whether Uniform
is monotone also when speeds are not divisible. Next Theorem gives a negative
answer to this question.

Theorem 6. Algorithm Uniform is not monotone with respect to not divisible
speeds.

Proof. We prove the Theorem by constructing an example where the allocation
computed by algorithm Uniform is not monotone. Consider the task sequence
σ = 〈2, 2, 2, 1, 1, 1〉 and the speed vectors s = 〈3, 8〉 and s′ = 〈2, 8〉. Observe that
on input (σ, s) algorithm Uniform partitions the virtual machines in only one
block and assigns all the load to machine 2 (see Fig. 1(a)): thus, we have a work
equal to 0 for machine 1 and a work equal to 9 for machine 2. On input (σ, s′),
instead, algorithm Uniform splits the virtual machines in 2 blocks producing
the schedule given in Fig. 1(b), where machine 1 obtains a work of 2. Thus, the
algorithm is not monotone because machine 1 increases its load while reducing
its speed.

1        2        3       4       5           6           7     8          9          10         11

1 block 

Assigned to 
machine 1

Assigned to 
machine 2

1          2          3           4           5           6     7            8         9         10      

2 blocks 

Assigned to 
machine 1

Assigned to 
machine 2

Assigned to 
machine 1

Assigned to 
machine 2

(a) (b)

Fig. 1. An example of non monotone scheduling computed by Uniform. In (a) it is
given the scheduling computed for s = (3, 8); in (b) it is given the scheduling computed
for S′ = (2, 8)

The proof of Theorem 6 shows that any algorithm based on the partition of
virtual machines in blocks will be not monotone if the number of blocks depends
on the speeds of the machines. We can modify Uniform, so that it sets g = 1
and it considers all the virtual machines as in the same block. This new algorithm
is monotone but it obtains a weak approximation since the assignment of the
virtual machines to real machines is completely unbalanced (see Fig. 2(a)). We
describe now a variation of Uniform that computes g = GCD(s1, s2, · · · , sm)
blocks but it makes a more clever assignment of the virtual machines of each
block to the real machines.
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Algorithm Uniform RR, described in Alg. 1, uses a round-robin strategy
to assign virtual machines of a block to real machines, starting from the vir-
tual machine with lowest work that is assigned to the real machine with lowest
speed. Fig. 2 shows the assignments computed by Uniform and Uniform RR
on an instance of 7 virtual machines and gives evidence of the more balanced
scheduling computed by Uniform RR. We state that algorithm Uniform RR
is monotone with respect to divisible speeds and it is (2+ ε)-approximated. The
proof of the monotonicity of Uniform RR is a technical extension of the proof
of monotonicity of Uniform given in [AP04] and we omit it from this extended
abstract (a complete version of the paper can be found in [AA04]). In order
to prove the bound on the approximation factor we show that for any speed
vector s and any task sequence σ it holds that Cost(Uniform RR, σ, s) ≤
Cost(Uniform, σ, s).

Algorithm 1 Uniform RR
Input: a task sequence σ, speed vector s = 〈s1, s2, . . . , sm〉, with s1 ≤ s2 ≤ . . . ≤ sm

1. Run algorithm LPT to allocate tasks of σ on S =
∑m

i=1 si identical virtual
machines.

2. Order the virtual machines by nondecreasing load l1, . . . , lS .
3. Set g := GCD(s1, s2, . . . , sm) and partition the virtual machines into g blocks

B1, . . . , Bg, each consisting of S/g consecutive virtual machines. For 1 ≤ i ≤ g
and 1 ≤ k ≤ S/g, denote by Bik the k-th virtual machine of the i-th block. Thus
the virtual machine Bik has load l(i−1) S

g
+k.

4. For each block j

(a) set ki = si/g, for 1 ≤ i ≤ m, and x = 1.
(b) for 1 ≤ k ≤ S/g

– while kx = 0 set x = (x + 1) mod m. Then, allocate the total load of
the virtual machine Bjk to the real machine x and set kx = kx − 1.

s1 s2 s1 s2 s1 s2 s2

2 5 6 19 20 2515

s1 s1 s1 s2 s2 s2 s2

2 5 6 19 20 2515

Fig. 2. Assignments computed by Uniform (left) and Uniform RR (right) on an
instance with two machines with speeds s = 〈3, 4〉. Uniform produces an assignment
with makespan equal to 19.75; Uniform RR produces an assignment with a makespan
equal to 16.25

In [AP04] it is proved that the makespan of Uniform is obtained by machine
m. We prove that a similar property holds also for Uniform RR.
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Lemma 7. For any speed vector s = 〈s1, s2, · · · , sm〉 and any task sequence σ it
holds that the makespan of the solution computed by Uniform RR is equal to
the completion time of the fastest machine.

Proof. We prove the lemma by showing that for each block B the load assigned
to machine m in block B is greater than or equal to the load assigned in the
same block to any other machine.

Let x1 ≤ x2 ≤ · · · ≤ xsm/g and y1 ≤ y2 ≤ · · · ≤ ysj/g be the loads of the
virtual machines assigned to machine m and j, for any j < m, respectively. We
observe that xh ≥ yh for 1 ≤ h ≤ sj/g and xh ≥ ysj/g for sj/g < h ≤ sm/g.
Then,

1
sm

sm/g∑
h=1

xh ≥ 1
sj

sj/g∑
h=1

yh.

Lemma 8. For any speed vector s = 〈s1, s2, · · · , sm〉 and any task sequence σ
it holds that the cost of the solution computed by Uniform RR is not greater
than the cost of the solution computed by Uniform.

Proof. By Lemma 7 it is sufficient to prove that Uniform RR assigns to ma-
chine m a total load not greater than the load assigned by Uniform to the same
machine.

Observe that the two algorithms compute the same assignment of tasks to
the virtual machines and the same partition of virtual machines in blocks. Thus,
it is sufficient to prove that the load assigned by algorithm Uniform RR to
machine m for each block B is not greater than the load assigned by Uniform
to the same machine. Let x1 ≤ x2 ≤ · · · ≤ xsm/g and y1 ≤ y2 ≤ · · · ≤ ysm/g be
the works of the virtual machines of block B assigned to machine m algorithms
by Uniform and Uniform RR, respectively. It can be easily seen that xh ≥ yh

for 1 ≤ h ≤ sm/g and the lemma follows.

Theorem 9. For any speed vector s = 〈s1, s2, · · · , sm〉 and any task sequence σ
it holds that

Cost(Uniform RR, σ, s) ≤ (2 + ε)opt(σ, s).

Proof. The theorem follows by Lemma 8 and Theorem 16 of [AP04].

5 Experimental Results

In this section we describe the results of an experimental analysis on the perfor-
mances of several monotone scheduling algorithms. We have performed two dif-
ferent experiments: in the first experiment we have measured the approximation
factors of several monotone heuristics, comparing them to the approximation of
LPT; in the second experiment, instead, we have measured the approximation
factors of the algorithms obtained by plugging different monotone greedy–like
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Table 1. Algorithms considered in our testing and their theoretical approximation
factors

Upper bounds to approximation factors of monotone
scheduling algorithms

LPT (1) ( 2n
n+1 )

LPT restricted(2) ( 2n
n+1 )

Uniform g=1 (3) (4 + ε)
Uniform g=1 restricted (4) (4 + ε)
Uniform restricted (5) (4 + ε)
Uniform RR g=1 (6) (4 − ε)
Uniform RR g=1 restricted (7) (4 − ε)
Uniform RR restricted (8) (4 − ε)

Table 2. Summary of the number of instances performed in each run

Jobs Machines Instances
β = 1 β = 2 β = 3 β = 4 β = 5 β = 6

10 4 3690 7380 11070 14760 22140 29520
25 5 3690 11070 14760 19680 29520 39360

100 10 5538 17694 33232 54310 66466 88620

algorithms in the scheme described in [AP04]; in the third experiment we have
measured the total quantity of money paid by the mechanisms induced from the
algorithms Uniform and Uniform RR. In our testing we have considered three
basic algorithms: LPT, Uniform and Uniform RR. We have also considered
several variations of these three algorithms, obtained by changing the number
of blocks, if used, or rounding the speeds of the machines. In particular, the re-
stricted versions of the two algorithms take in input the machine speeds, round
up the speeds to a power of 2 and then compute the scheduling. Table 1 sum-
marizes the algorithms we have considered in our testing. We have performed
experiments with respect to arbitrary speeds. We executed our measures on
three different runs: in each run we fix the number of machines and the number
of tasks and select speeds uniformly in a range [1, 2β ] with 1 ≤ β ≤ 6 and task
weights uniformly in a range [1, 2α] with 0 ≤ α ≤ 8. Table 2 gives a summary
of the instances performed in each run. For each instance we have measured the
makespan and the approximation factor. Then we have computed the average
makespan, the average approximation factor and the worst case approximation
factor in each run. We have also performed similar experiments for speeds and
weights selected according to a normal distribution and for 2–divisible speeds.
The results obtained are substantially equivalent and we omit them. Figure 3
shows the worst case approximation factors obtained in the three runs. Table 3,
instead, shows the average approximation factors, where the average is computed
on the set of all the instances. Experiments give evidence that Uniform RR ob-
tains the best results among the monotone algorithms considered in our testing.
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Fig. 3. Worst case approximation factors obtained in our testing. Algorithms are la-
beled as shown in Table 5. (a) 10 tasks and 4 machines (b) 15 tasks and 5 machines
(c) 100 tasks and 15 machines

Table 3. Average Competitive ratio computed on all the instances

Average approximation factors of monotone
scheduling algorithms

Largest Processing Time 1.377031
Largest Processing Time restricted 1.777902
Uniform MCD=1 4.692374
Uniform MCD=1 restricted 4.062987
Uniform restricted 3.387385
Uniform Round-Robin MCD=1 2.935213
Uniform Round-Robin MCD=1 restricted 2.600026
Uniform Round-Robin restricted 1.988051

Its approximation factor is very close to LPT, both in the worst case and in
the average case. Uniform, instead, obtains an approximation factor that is
very close to the theoretical bound. An unexpected result is that the restricted
version of Uniform RR obtains better results than the unrestricted version of
the same algorithm and its performances improve when the number of tasks
increase. Our interpretation is that the restriction version of the problem uses
more blocks and thus obtains a more balanced assignment of virtual machines
to real machines, counterbalancing the approximation induced by the rounding
of the machine speeds.

We have also experimentally measured the impact of the proposed greedy-
close monotone algorithms on the performances of the PTAS-Gc algorithm
defined in [AP04]. Notice that PTAS-Gc takes three inputs: the task sequence,
the speed vector and a parameter h, that is the number of tasks that are allo-
cated optimally in the first phase of the algorithm. Our testing is organized in
two runs: the first run is performed on instances with 15 tasks and 4 machines;
the second run is performed on instances with 25 tasks and 5 machines. For each
instance of σ and s we run the algorithm with h ∈ {0, 3, 5, 8} Our experiments
point out two interesting aspects: the first one is that, since the largest tasks are



Deterministic Monotone Algorithms for Scheduling on Related Machines 279

0

0,5

1

1,5

2

2,5

3

Uniform MCD=1 Uniform MCD=1
restricted

Uniform restricted Uniform Round
Robin MCD=1

Uniform Round
Robin MCD=1

restricted 

Uniform Round
Robin restricted

Alghorithms

C
o

m
p

et
it

iv
e 

ra
ti

o

h=0

h=3

h=5

h=8

Fig. 4. Average approximation factor of PTAS-Gc, computed on all the instances of
our testing, for different selections of Gc and h

assigned optimally, the difference in the performances between Uniform RR
and the other heuristics is significantly less; the second one is that all the con-
sidered heuristics, except for Uniform RR, improve their performances when h
increases. In particular, for h sufficiently large, algorithm Uniform outperforms
Uniform RR. However, this relatively small improvement in the approximatio
factor is counterbalanced by a dramatic growing in the computatio time.

6 Conclusion

The contribution of this paper is twofold. From a theoretical point of view,
we have proved that greedy algorithms like LPT and LS are monotone if we
restrict to the case of 2 machines with c–divisible speeds, for c large enough.
We think that this technique can be generalized to prove that greedy algorithms
can be made monotone with a loss in the approximation factor even for the
case of m > 2 machines. From an experimental point of view we have analyzed
several heuristics, based on the algorithm Uniform, and proved that making a
more clever assignments of virtual machines to real machines can significantly
improve the performances of the algorithm. In particular, we have shown that
in several cases rounding machine speeds can yield better results than solving
the problem with respect to the original speeds. However, if we could prove that
LPT is monotone for c-divisible speeds, for a small c, we could obtain even
better approximations.
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Abstract. SONET add-drop multiplexers (ADMs) are the dominant
cost factor in SONET /WDM rings. The number of SONET ADMs
required by a set of traffic streams is determined by the routing and
wavelength assignment of the traffic streams. Following previous work,
we consider the problem where the route of each traffic stream is given
as input, and we need to assign wavelengths so as to minimize the total
number of used SONET ADMs. This problem is known to be NP-hard,
and the best known approximation algorithm for this problem has a
performance guarantee of 3

2 . We improve this result, and present a 10
7 -

approximation algorithm. We also study some of the previously proposed
algorithms for this problem, and give either tight or tighter analysis of
their approximation ratio.

1 Introduction

WDM (Wavelength Division Multiplexing)/SONET (Synchronous Optical NET-
works) rings form a very attractive network architecture that is being deployed by
a growing number of telecom carriers. In this architecture each wavelength chan-
nel carries a high-speed SONET ring. The key terminating equipments are opti-
cal add-drop multiplexers (OADM) and SONET add-drop multiplexers (ADM).
Each vertex is equipped with exactly one OADM. The OADM can selectively
drop wavelengths at a vertex. Thus, if a wavelength does not carry any traffic
from or to a vertex, its OADM allows that wavelength to optically bypass the
vertex. Therefore, in each SONET ring a SONET ADM is required at a vertex
if and only if it carries some traffic terminating at this vertex. In this paper we
study the problem of minimizing the total cost incurred by the SONET ADMs.

Formally, we are given a set E of circular-arcs over the vertices 0, 1, . . . , n−
1, where the vertices are ordered clockwise. A pair of arcs (i, j), (k, l) is non-
intersecting if the clockwise paths along the cycle 0, 1, . . . , n− 1, 0 that connects
i to j and the clockwise path that connects k to l do not share any arc of the
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cycle. A set of arcs is non-intersecting if each pair of arcs from this set is non-
intersecting. A feasible solution is a partition of E into non-intersecting subsets
of arcs E1, E2, . . . , Ep. The cost of Ei is the number of different vertices of the
ring that are end-points of the arcs of Ei. The cost of the solution is the sum of
costs of Ei for all i. The goal is to find a minimum cost feasible solution.

For an arc (i, j), we define its length as �(i, j) = j− i mod n. For a subset of
arcs, the length of the subset is the total length of its arcs. Throughout the paper
we often use vertex numbers x where x ≥ n to denote the vertex x mod n. We
omit the mod operation to simplify notations.

A chain is an open directed path of length at most n−1, and a cycle is a closed
directed path of length exactly n. W.l.o.g. we can assume that the arcs in each
Ei form a connected component (either a chain or a cycle). This is so because
if the arcs in Ei are disconnected, then we can partition Ei to its connected
components without increasing its total cost. Therefore, we ask for a partition
of E into cycles and (open-)chains. The cost of a feasible solution equals the sum
of |E| and the number of chains in the solution.

Liu, Li, Wan and Frieder [3] proved that this problem is NP-hard. They
also considered a set of heuristics, and tested them empirically. Gerstel, Lin
and Sasaki [2] also designed some heuristics for this problem. Wan, Calinsecu,
Liu and Frieder [4] proved that any nontrivial heuristic is a 7/4-approximation
algorithm. I.e., any algorithm such that none of its chains can be united to form a
larger chain (a local optimum) is a 7/4-approximation algorithm. Calinsecu and
Wan [1] provided a 3/2-approximation algorithm, and analyzed the worst-case
performance of the previously studied heuristics. Below, we further describe the
results of [1].

Let OPT be a given optimal solution to our problem with cost opt. Assume
that for i = 2, 3, . . ., OPT has CYi cycles with i arcs, and for i = 1, 2, . . ., OPT
has CHi chains with i arcs. We further assume that CY2 is maximized among
all optimal solutions, and as noted in [1] that no feasible solution can have a
higher value of CY2. For an algorithm A, we also use A to denote the cost of
its returned solution. We sometimes use APX to denote the cost of a solution
returned by an approximation algorithm.

A feasible solution SOL induces a partition of the arcs into an Eulerian
subgraph and a set of mega-chains as follows: We consider the set of cycles and
chains used by SOL as a set of arcs in directed auxiliary graph over {0, 1, . . . , n−
1} where cycles are loops and a chain is a directed arc from its starting vertex
to its end vertex. In this directed graph we find a maximal subgraph in which
the in-degree of each vertex equals its out-degree. The remaining arcs define a
minimal set of chains such that each such chain is directed from a vertex whose
out-degree is greater than its in-degree, towards a vertex whose in-degree is
greater than its out-degree. Each such chain in the auxiliary graph corresponds
to a mega-chain in the original graph (by replacing each arc in the auxiliary
graph by its corresponding chain). Therefore, each mega-chain is composed of
chains. The remaining arcs in the original graph are the Eulerian subgraph.
Note that the Eulerian subgraph need not be connected. Note that the number
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of mega-chains in SOL is independent of SOL, and is common to all feasible
solutions.

We now formalize Algorithm Iterative Matching (IM) (see [1]). The algorithm
maintains a set of valid chains of arcs P that covers E throughout its execution.
Initially, P consists of chains each of which is an arc in E. The fit graph F(P)
is defined as follows: its vertex set is P, and two of its vertices are connected
by an edge if the two corresponding chains have a common end-point, and they
can be concatenated to form a valid chain. The algorithm constructs F(P), and
if its edge set is not empty, then it finds a maximum matching M in F(P).
Then, it merges each matched pair of chains of arcs in M into a longer chain.
When the edge set of F(P) is empty, P is the valid chain generation that is
given as output. Calinescu and Wan [1] showed that the approximation ratio of
Algorithm IM is at most 5

3 , and provided a negative example for the algorithm
that shows that its approximation ratio is at least 3

2 . We improve the negative
examples of the algorithm by presenting an example where the approximation
ratio of the algorithm is at least 1.6. For a variant PPIM of algorithm IM with
a preprocessing step that removes all cycles with two arcs each, we present a
negative example that shows that the approximation ratio of PPIM is at least
14
9 . We further show that the approximation ratio of IM is strictly less than 5/3.

Calinescu and Wan considered a variant of Algorithm IM: Algorithm Prepro-
cessed Iterative Matching (PIM) defined as follows:

1. Preprocessing phase: repeatedly remove cycles consisting of remaining arcs
until no more cycle can be obtained.

2. Matching phase: apply Algorithm IM to the arcs remaining after the first
phase.

They showed that Algorithm PIM has an approximation ratio of at most 3
2 ,

and gave a negative example for PIM that shows that its approximation ratio is
at least 4

3 . We show that the 3
2 bound is tight. We also provide a better analysis

of the approximation ratio of the algorithm. This improved analysis in Section
3 does not improve the worst case performance of the algorithm, but together
with our Algorithm GPTS defined in Section 4 it provides Algorithm COMB,
and the main result of this paper (shown in Section 5) is that Algorithm COMB
is a 10/7-approximation algorithm. We show that the approximation ratio of
algorithm COMB is at least 4

3 .
Algorithm Preprocessed Cut and Merge (PCM) is defined as follows:

1. Remove all cycles of two arcs each.
2. Choose a cycle’s arc (i, i + 1) with minimum load, and let Bi denote the

subset of E that pass through (i, i + 1). Partition E \Bi into an optimal set
of chains using a greedy procedure. Let P be the obtained chains.

3. Construct a weighted bipartite graph with sides Bi and P as follows: if
a ∈ Bi can be merged with P ∈ P, add an edge between a and P with
weight equal to the number of their common end-vertices. Find a maximum-
weight matching in the resulting graph. Merge each pair of arc and a chain
into a larger chain. This step is repeated until no further merging can be
obtained.
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Calinescu and Wan [1] proved that the approximation ratio of PCM is be-
tween 3/2 and 5/3. In this paper we close this gap, and improve the lower bound
on the approximation ratio of PCM by showing that the approximation ratio of
PCM is exactly 5/3.

Algorithm Preprocessed Eulerian Tour-Trail Splitting (PET-TS) is defined
as follows:

1. Remove all cycles of two arcs each.
2. Eulerian tour phase: add a minimum size set of fake arcs E′ to make the

directed graph with arc set E ∪ E′ Eulerian (and if it is disconnected, each
connected component is Eulerian). Find an Eulerian tour in this graph, and
remove all the fake arcs from this tour to obtain a set of trails.

3. Trail decomposing phase: Decompose each trail into simple paths and cir-
cuits.

4. Chain split phase: split each (open) path into valid chains by walking along
the path from its first arc, and generating a valid chain whenever overlap
occurs; split each invalid circuit into valid chains by walking along the circuit
from each arc, generating a valid chain whenever overlap occurs, and then
choose the one with the smallest number of open chains.

5. Chain merging phase: Repeatedly merge any pair of open chains into a larger
valid chain until no more merging can occur.

Calinescu and Wan [1] proved that the approximation ratio of PET-TS is
between 3/2 and 7/4. We narrow this gap by showing that the approximation
ratio of PET-TS is at least 5/3.

The paper [1] also considered MCC-TS that is a variation of PET-TS in which
the Eulerian tour phase is replaced by the following: define a weighted directed
graph H(E) with vertex set E as follows. For any pair of non-intersecting arcs
e1, e2 ∈ E, such that e1 = (i, j) and e2 = (k, l), add an arc from e1 to e2 and an
arc from e2 to e1. If e1, e2 do not share any end-vertices, then the weights of both
arcs are set to two. If j = k, then the weight of the arc from e1 to e2 is set to one,
and the weight of the arc from e2 to e1 is set to two. Otherwise, the weight of
the arc from e1 to e2 is set to two, and the weight of the arc from e2 to e1 is set
to one. Now, find a minimum weight circuit cover of H(E). Remove from it all
the arcs of weight two to obtain a set of paths and circuits. Calinescu and Wan
[1] proved that the approximation ratio of MCC-TS is between 3/2 and 8/5. We
close this gap by showing that the approximation ratio of MCC-TS is exactly
14/9. If the pre-processing step of two arcs cycles removal is not performed, we
show that the bound 8/5 is tight (we call this algorithm NMCC-TS).

Note that although we consider the absolute approximation ratio in this
paper, all results are valid for the asymptotic approximation ratio as well. All
negative examples can be easily magnified by taking multiple copies of each input
arc, to form arbitrary large negative examples.
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2 Negative Examples

In this section we give negative examples where the approximation ratio is at
least 3/2. This will show that the upper bound of 3/2 on the performance of
PIM given in [1] is tight i.e. that the following theorem holds.

Theorem 1. The approximation ratio of PIM is exactly 3
2 . The approximation

ratio of any algorithm that removes cycles in an arbitrary order (even if it re-
moves the two arc cycles first) and then solves the remaining instance, is at
least 3

2 .

If we are interested in the design of a better approximation algorithm, the
negative examples in this section exclude the option that a better analysis of
PIM or a design of a similar algorithm that replaces the matching phase may be
the answer.

Proof. We start with a very simple example showing that an algorithm which
removes cycles in an arbitrary way cannot perform better than 3/2. Let n = 3
and the input arcs be (0, 1),(0, 2),(1, 2),(1, 0), (2, 0),(2, 1). Clearly, OPT consists
of three two arc cycles which are (i, i + 1), (i + 1, i) for i = 0, 1, 2, and therefore
opt = 6. However, if the algorithm removes the cycle (0, 1), (1, 2), (2, 0), then it
is left with three arcs of length 2 > n/2 that cannot be combined. Therefore, we
have APX = 9. This gives approximation ratio of at least 3/2.

The above input consists of two arcs cycles only. As it was already noticed
in [1], it is easy to remove such cycles before processing any algorithm, and
prevent the situation above. In the next example we show that even if there are
no two arc cycles in the input, still an arbitrary removal procedure cannot reach
smaller performance ratios. Moreover, we consider the following exponential-
time algorithm: first, remove all cycles of two arcs, next, remove cycles one
after the other until the remaining arcs do not contain a cycle, and finally solve
optimally (in exponential time) the remaining arcs. We show that this algorithm
has an approximation ratio of at least 3/2. Since this algorithm outperforms
PIM, we conclude that it is a 3/2-approximation algorithm (however, not a
polynomial-time).

For a given integer parameter α ≥ 2, consider n = 2α2 − 4α + 4, and the arc
set (with the optimal solution) is given by: for every 0 ≤ i ≤ α − 3 and every
0 ≤ j ≤ α− 3, we have the arcs (αj + i, αj + i + 1), (αj + i + 1, n− αi− j − 5),
(n−αi−j−5, n−αi−j−4) and (n−αi−j−4, αj+i). For every 0 ≤ i ≤ α−4, we
have the arcs (n−α(i+1)−4, n−α(i+1)−3), (n−α(i+1)−3, n−α(i+1)−2)
and (n − α(i + 1) − 2, n − α(i + 1) − 4). For every 1 ≤ j ≤ α − 3, we have
the arcs (αj − 2, αj − 1), (αj − 1, αj) and (αj, αj − 2). Finally, we have the
twelve arcs of the following four triangles: (α2 − 2α − 2, α2 − 2α − 1, α2 − 2α),
(α2 − 2α, α2 − 2α + 1, α2 − 2α + 2), (n − 4, n − 3, n − 2) and (n − 2, n − 1, 0).
Then, OPT has (α− 2)2 cycles of four arcs and 2(α− 2)+4 cycles of three arcs,
and its total cost is exactly 4(α− 2)2 + 3[2(α− 2) + 4] = 4α2 − 10α + 16.

We now argue that the instance contains the arc (t, t + 1) for every t. The
arcs (0, 1), . . . , (α2−2α−3, α2−2α−2) are given by the arcs (αj + i, αj + i+1)
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for 0 ≤ i ≤ α− 3, 0 ≤ j ≤ α− 3. In this set there is a gap of two arcs every α− 2
arcs which is filled by the arcs (αj − 2, αj − 1), (αj − 1, αj) for 1 ≤ j ≤ α − 3.
Similarly the arcs (α2 − 2α + 2, α2 − 2α + 3), . . . , (n− 5, n− 4) are given by the
arcs (n − αi − j − 5, n − αi − j − 4) for 0 ≤ i ≤ α − 3, 0 ≤ j ≤ α − 3. In this
set there is again a gap of two arcs every α − 2 arcs which is filled by the arcs
(n−α(i+1)−4, n−α(i+1)−3), (n−α(i+1)−3, n−α(i+1)−2) for 0 ≤ i ≤ α−4.
The remaining eight arcs (α2−2α−2, α2−2α−1), . . . , (α2−2α+1, α2−2α+2)
and (n − 4, n − 3), . . . , (n − 1, 0) are given by the arcs of the last four triangles
(except for the last arc of each triangle). Assume that the cycle which consists
of n arcs is exactly the cycle that our algorithm removes.

Note that in the remaining arc set S each arc has length at least 4. We next
show that in the optimal solution for the remaining arcs each arc consists of its
own chain. To see this it is enough to show that if there is a pair of arcs in S
with a common end-vertex v, then their total length is at least n + 1 (this claim
also shows that the original instance does not contain two arcs cycles). First,
note that if one of the arcs incident at v occurs in one of the triangles of OPT ,
then its length is exactly n−2, the other arc has length at least 4, and therefore
their total length is greater than n + 1. Therefore, we can assume that the pair
of arcs incident at v are from the four arcs cycles of OPT . Let 0 ≤ i, j ≤ α− 3:

– Assume that v = αj + i. Then, the arcs incident at v are (n− αi− j − 4, v)
and (v, n− α(i− 1)− j − 5), and their total length is n + α− 1 > n for all
values of α ≥ 2.

– Assume that v = n−αi−j−5. Then, the arcs incident at v are (αj+i+1, v)
and (v, α(j + 1) + i), and their total length is n + α− 1 > n for all values of
α ≥ 2.

Therefore, our optimal solution for S is a chain for each arc. Since |S| =
2(α− 2)2 + 1[2(α− 2) + 4] (S contains two arcs from each cycle of four arcs in
OPT , and one arc from each triangle of OPT ), we conclude that the cost of the
approximation algorithm is |E|+|S| = 6(α−2)2+4[2(α−2)+4] = 6α2−16α+24.
Therefore, the approximation ratio of the algorithm approaches 3/2 as α goes
to infinity (also n grows to infinity).

3 A Better Analysis of the Algorithm PIM

In this section we assume that the Preprocessing phase of Algorithm PIM first
removes cycles with two arcs, and only if such cycles do not exist, other cycles
are removed.

The proof of the next theorem is similar to the proof of Lemma 19 in [1].

Theorem 2. Algorithm PIM returns a solution whose cost is at most
1 · 2CY2 + 4

3 · 3CY3 + 7
55CY5 + 1 · (2CH1 + 3CH2) + 5

4 (4CH3 + 5CH4) + 3
24CY4

+ 3
2

(∑n
i=6 iCYi +

∑n−1
i=5 (i + 1)CHi

)
.

Proof. To prove the claim we assign the cost of the solution obtained by Algo-
rithm PIM to the arcs, such that the following properties hold:
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1. The total cost assigned to the arcs that belong to a cycle in OPT of two
arcs is exactly the cost paid by OPT to this cycle, i.e. 2.

2. The total cost assigned to the arcs that belong to a cycle in OPT of three
(resp. five) arcs is at most 4

3 (resp. 7
5 ) times the cost paid by OPT to this

cycle, i.e. 4 (resp. 7). The total cost assigned to the arcs that belong to a
cycle in OPT of four arcs or at least six arcs is at most 3

2 times the cost paid
by OPT to this cycle.

3. The total cost assigned to the arcs that belong to a chain in OPT of at
most two arcs is exactly the cost paid by OPT to this chain. The total cost
assigned to the arcs that belong to a chain in OPT of three or four arcs is
at most 5

4 times the cost paid by OPT to this chain. The total cost assigned
to the arcs that belong to a chain in OPT of at least five arcs is at most 3

2
times the cost paid by OPT to this chain.

To prove property 1, note that the preprocessing phase take out exactly
all cycles of OPT of exactly two arcs, and therefore their cost in the solution
obtained by PIM is exactly their cost in OPT .

We prove the other properties by considering not the solution obtained by
PIM, but an alternative solution that is no better than PIM in terms of cost.
We replace the solution of PIM with the solution obtained by PIM after the first
iteration of the matching phase. This is clearly an upper bound on the cost of
PIM. We further replace the solution by a solution that does not create an op-
timal matching, but some feasible matching that we construct. The matching is
constructed by uniting matchings that may be created from the remaining arcs
(after cycle removal by PIM) from each component of OPT (cycle or chain) sepa-
rately. Note that a remaining path of s arcs contributes a matching of size 	s/2
.

We now prove property 2. Each cycle of OPT loses at least one arc in the
preprocessing phase. Consider a cycle of OPT which contains k arcs (k ≥ 3).
Let � ≥ 1 be the number of arcs that the cycle loses in the preprocessing phase.
There is a matching of the arcs from this cycle of size 	k−1

2 
 − (l− 1) (after the
first arc from this cycle is removed, we have a matching of size 	k−1

2 
. Every
other arc that is removed destroys at most one arc in the matching). The cost
of the cycle depends on the number of chains created from it. This number is at
most �k−1

2 
 ≤ k
2 . I.e., for three arcs cycles we have at most one chain, and five

arcs cycles we have at most two chains. This gives the costs 4 and 7 for cycles
of three and five arcs (respectively). For a cycle of k arcs we get at most k/2
chains, which proves the case of four arc cycles, and cycles of at least six arcs.

Next, we prove property 3. For a chain in OPT of k arcs such that l arcs are
taken out in the preprocessing phase, there is a matching of the arcs from this
chain of size 	k

2 
 − l (before the preprocessing phase we have a matching of size
	k

2 
, and every arc that is removed, destroys at most one arc in the matching).
Therefore, the number of chains created after the first matching step equals the
number of chains OPT has if the number of arcs in the chain is one or two. If the
number of arcs in the chain is three or four, then the number of chains after the
first matching phase is at most two (whereas OPT has one chain). Therefore,
in this case we have a ratio of at most 5

4 between the cost OPT pays for this
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chain and the cost PIM pays for this chain. For longer chains, we get at most
�k

2 
 − 1 new chains (compared to OPT ), and so PIM pays at most 3
2 times the

cost OPT pays.
Taking the optimal matching instead of the matching we describe above,

only decreases the cost of the solution, and therefore the claim holds also for the
solution obtained by PIM.

4 Algorithm GPTS

In this section we study a different approximation algorithm for the problem.
Given a set of input arcs we apply a certain greedy clean-up preprocessing phase
that is composed of five steps. First, we remove all cycles of two arcs (the number
of the cycles that we remove in this step is exactly CY2). Then, we remove
greedily certain subgraphs (cycles or chains with a certain number of arcs and
certain length), by removing each time a single such subgraph as long as the
remaining graph contains a subgraph with the desired property. E.g., in Step 2
we remove cycles of three arcs each one at a time until the remaining arc-set
does not contain a cycle with exactly three arcs.

Algorithm Greedy-Preprocessing Trail-Split (GPTS):

1. Remove all cycles of two arcs.
2. Remove greedily cycles of three arcs until there are no such cycles.
3. Remove greedily mega-chains of at most three arcs with length in the interval

[ 3n
4 , n− 1] until there are no such mega-chains.

4. Remove greedily cycles of four arcs until there are no such cycles.
5. Remove greedily cycles of five arcs until there are no such cycles.
6. Cover the rest of the arcs with chains in the following way:

(a) Find a set of mega-chains (with arbitrary lengths) that connect the odd-
vertices and remove them. For each such mega-chain of length greater
than n, decompose it into chains of length at most n.

(b) Partition the rest of the arcs (these are from the Eulerian subgraph) into
chains (or cycles) of length at most n.

Observation 3. Consider a mega-chain with length in the interval [kn, (k +
1)n− 1] that is created in step 6a. Then, the number of chains that result from
it is at most 2k + 1.

Proof. We perform a greedy partition that chooses a maximum length chain at
each step. Therefore, the total length of each pair of consecutive chains in a
mega-chain is at least n (otherwise, they can be united).

Observation 4. The chains obtained in step 6b have an average length of at
least n

2 .

Proof. The claim follows because the total length of each pair of consecutive
chains resulting from the Eulerian subgraph is at least n (otherwise, they can
be united).
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Notations: consider OPT . Partition it into mega-chains and an Eulerian
subgraph. There may be several options to do that, therefore we fix an arbitrary
partition. Denote by:

– CY - the number of cycles in OPT that contain at least six arcs.
– CHE - the number of chains in OPT that are part of the Eulerian subgraph

defined with respect to OPT .
– MC - the total number of mega-chains.
– CHM - the number of chains in OPT that are part of mega-chains defined

with respect to OPT .
– MC3 - the number of mega-chains of at most three arcs with total length in

the interval [3n
4 , n− 1]. Note that such a mega-chain is a chain of OPT .

– MCs - the number of mega-chains with total length less than 3n
4 .

– MC4 - the number of mega-chains with exactly four arcs and total length in
the interval [3n

4 , n− 1].
– MC5 - the number of mega-chains with at least five arcs and total length in

the interval [3n
4 , n− 1].

– MCi - the number of mega-chains with total length in the interval [in, (i +
1)n− 1]. MCi is defined for all i ≥ 1.

– CH1
E and CH2

E - the number of chains in OPT that are part of the Eulerian
subgraph, of exactly one arc, and exactly two arcs, respectively.

– CH1
M and CH2

M - the number of chains in OPT that are part of mega-chains,
of exactly one arc, and exactly two arcs, respectively.

Note that a mega-chain in OPT with total length in the interval [in, (i +
1)n− 1] consists of at least i + 1 chains (in OPT ).

The total length of all arcs is at most UBL = (CY2 + CY3 + CY4 + CY5 +
CY )n + CHEn + MC3n + MCs

3n
4 + MC4n + MC5n +

∑∞
i=1[MCi(i + 1)n].

Consider Algorithm GPTS, and denote by A the number of cycles removed
in step 2, B- the number of chains removed in step 3, C- the number of cycles
removed in step 4. D - the number of cycles removed in Step 5. Then, the
following inequalities hold: 3A ≥ CY3, 3A+3B ≥ CY3 +MC3, 3A+3B +4C ≥
CY3 + MC3 + CY4, and 3A + 3B + 4C + 5D ≥ CY3 + MC3 + CY4 + CY5.
Subject to these constraints we want to minimize nA + 3nB

4 + nC + nD (this is
a lower bound on the total length that we gain by removing these subgraphs).
An optimal solution of this (parametric) mathematical program is A = CY3

3 ,
B = MC3

3 , C = CY4
4 , and D = CY5

5 .
This proves that each feasible solution to the mathematical program has a

cost of at least n
3 CY3 + n

4 MC3 + n
4 CY4 + n

5 CY5, and this is the cost of the
(feasible) solution that we outlined above, and therefore it is optimal.

Therefore, the total length of the arcs that are left in the beginning of step
6 is at most UB′

L = UBL − CY3
3 n− MC3

3 · 3n
4 − CY4

4 n− CY5
5 n.

By Observations 3 and 4, the total number of chains obtained by our algo-
rithm is at most UB′

L

n/2 +MC (note that this include also the chains from step 3).
In the remaining of this section we use the fact that Step 1 of the algorithm

correctly identifies all the cycles of OPT that have two arcs. Therefore, we can
assume that CY2 = 0.
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We use the fact that MC = MC3 + MCs + MC4 + MC5 +
∑∞

i=1 MCi to
obtain that the number of chains resulted by our algorithm is at most: APXCH =
4
3CY3 + 3

2CY4 + 8
5CY5 + 2CY + 2CHE + 5

2MC3 + 5
2MCs + 3MC4 + 3MC5 +∑∞

i=1 MCi[2(i + 1) + 1]. We denote OMC = MC3 + MCs +
∑∞

i=1[MCi(i + 1)].
Since 2(i+1)+1 ≤ 5

2 (i+1) for all i ≥ 1, we reduce the term
∑∞

i=1 MCi[2(i+1)+1]
into 5

2

∑∞
i=1[MCi(i + 1)].

Therefore, the total cost of the solution obtained by our algorithm is apx =
|E|+APXCH ≤ |E|+ 4

3CY3 + 3
2CY4 + 8

5CY5 +2CY +2CHE +3MC4 +3MC5 +
5
2OMC, and the cost of OPT is opt = |E|+ CHE + MC4 + MC5 + OMC.

We consider the partition of E according to the roles of arcs in OPT to the
following (disjoint) subsets: E(CY3): arcs that belong to cycles of three arcs in
OPT . E(CY4): arcs that belong to cycles of four arcs in OPT . E(CY5): arcs that
belong to cycles of five arcs in OPT . E(CY ): all the other arcs that belong to
cycles in OPT . E(CHE): arcs that belong to the Eulerian subgraph but not to
E(CY3)∪E(CY4)∪E(CY5)∪E(CY ). E(MC4): arcs that belong to mega-chains
of exactly four arcs with total length in the interval [3n

4 , n − 1]. E(MC5): arcs
that belong to mega-chains of at least five arcs with total length in the interval
[ 3n

4 , n− 1]. E(OMC): the rest of the arcs that belong to mega-chains.
The following equations and inequalities hold using the numbers of arcs in

the subgraphs of OPT .

|E(CY3)|+ 4
3
CY3 =

13
9
|E(CY3)| (1)

|E(CY4)|+ 3
2
CY4 =

11
8
|E(CY4)| (2)

|E(CY5)|+ 8
5
CY5 =

33
25
|E(CY5)| (3)

|E(CY )|+ 2CY ≤ |E(CY )|+ 2
6
|E(CY )| = 4

3
|E(CY )| (4)

|E(CHE)| ≥ 3CHE − 2CH1
E − CH2

E (5)

|E(MC4)|+ 3MC4 ≤ 7
5
(|E(MC4)|+ MC4) (6)

|E(MC5)|+ 3MC5 ≤ 4
3
(|E(MC5)|+ MC5) (7)

|E(OMC)| ≥ 3OMC − 2CH1
M − CH2

M (8)

Using the inequalities (after re-considering the cycles of two arcs), it is possi-
ble to prove the following theorem. We omit the proof due to space constraints.

Theorem 5. Algorithm GPTS returns a feasible solution whose cost is at most

2CY2 +
13
9
|E(CY3)|+ 7

5

(
|E(CY5)|+ |E(MC4)|+ MC4

)
+

7
4

(
2CH1

E + 3CH2
E

+2CH1
M + 3CH2

M

)
+

11
8

(
opt− 2CY2 − |E(CY3)| − |E(CY5)| − |E(MC4)|

−MC4 − 2CH1
E − 3CH2

E − 2CH1
M − 3CH2

M

)
.
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5 An 10
7 -Approximation Algorithm: Algorithm COMB

In this section we design a new approximation algorithm COMB. Algorithm
COMB combines the two algorithms: PIM and GPTS. It simply applies both
PIM and GPTS, and picks the better solution.

It is possible to adapt the bound on PIM as follows. PIM ≤ 2CY2 +
4
3 |E(CY3)| + 7

5 |E(CY5)| + (2CH1 + 3CH2) + 5
4 (MC4 + E(MC4)) + 3

2

(
opt −

2CY − |E(CY3)| − |E(CY5)| − 2CH1 − 3CH2 −MC4 − |E(MC4)|
)
.

We omit the proof of the following theorem.

Theorem 6. The approximation ratio of Algorithm COMB is at most 10
7 , and

at least 4
3 .

The upper bound is proved by considering a convex combination of the cost
of the two algorithms, and showing an upper bound of 10opt/7 on it. The lower
bound is shown by reconsidering example 15 from [1].

6 Other Algorithms

In this section we consider several previously known algorithms, and give tight
or tighter bounds on their performance. Due to space restrictions, the analysis
of algorithms PCM, PET-TS and IM is omitted.

6.1 MCC-TS

In [1] algorithm MCC-TS has a preprocessing step of two arcs cycles removal.
However, the algorithm can be easily adapted to work without this step, and
the analysis still works. While building the auxiliary graph the option of two
arcs that form a cycle should be taken into account, and the arcs between those
arcs both get weight one. It was shown [1] that the performance ratio for this
algorithm is in the interval [1.5, 1.6]. We show that the upper bound is tight. To
distinguish between the two versions we call them MCC-TS (the version with
pre-processing) and NMCC-TS (without pre-processing).

The proof of the following theorem is omitted.

Theorem 7. Algorithm NMCC-TS has approximation ratio of exactly 1.6.

For algorithm MCC-TS (with two arc cycles removal), we can show a tight
bound of 14/9. We prove it using the next two lemmas.

Lemma 1. Algorithm MCC-TS has approximation ratio of at least 14/9.

Proof. Let n = 24m4 for an integer m > 1. The input arcs are described in Table
1. The input consists of five families of arcs. Each family has certain amount of
parallel copies of arcs (this amount appears in the column Amount). The arc set
of each family is parameterized by i or by i, s. For each value of the parameters
in the Index range (that appears in the second column) we have the amount of
parallel copies of the arcs that appear in the Arcs column.
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Table 1. Input arcs

Amount Index range Arcs
12m3 0 ≤ i < n (i, i + n/2), (i + n/2, i − 2m2), (i − 2m2, i)
24m2 0 ≤ i < n, 1 ≤ s ≤ m (i, i + n/3 − sm2)
12m2 0 ≤ i < n, 1 ≤ s ≤ m (i, i + n/3 + 2(s + 1)m2)
12m3 0 ≤ i < n (i, i + 2), (i, i + 3)
6m3 0 ≤ i < n (i, i − 4), (i, i − 6)

We give an upper bound on opt by the cost of the following solution. The
solution has for every 0 ≤ i < n, 12m3 cycles which are (i, i + n/2), (i + n/2, i−
2m2), (i − 2m2, i). For 0 ≤ i < n we have 6m3 cycles of (i, i + 2), (i + 2, i +
4), (i + 4, i) and 6m3 of (i, i + 3), (i + 3, i + 6), (i + 6, i) for 0 ≤ i < n. Finally,
for every 0 ≤ i < n and for every 2 ≤ s ≤ m there are 12m2 identical cycles:
(i, i+n/3−sm2), (i+n/3−sm2, i+2n/3−2sm2), (i+2n/3−2sm2, i). The arcs
(i, i+n/3−m2) and (i, i+n/3+2(m+1)m2), are not combined into cycles but
into paths, 12m2 copies of (i, i + n/3−m2), (i + n/3−m2, i + 2n/3− 2m2) for
every 0 ≤ i < n and 6m2 of (i, i+n/3+2(m+1)m2), (i+n/3+2(m+1)m2, i+
2n/3 + 4(m + 1)m2) for every 0 ≤ i < n. Since m > 1, 4(m + 1)m2 < n/3.

The MCC solution may consist of the following cycles (it manages to combine
all arcs into long cycles). Note that each pair of consecutive arcs in each cycle is
indeed valid for MCC as their combined length is less than n. This will hold due
to the choice of n = 24m4 which gives (m+2)m2 < n/3 and 2(m+1)m2 < n/6.
We have 12m2 copies of the following cycle (i, i + n/2), (i + n/2, i + 5n/6 −
sm2), (i+5n/6−sm2, i+n/3− (s+2)m2), (i+n/3− (s+2)m2, i+2n/3− (2s+
2)m2), (i + 2n/3− (2s + 2)m2, i), for every 0 ≤ i < n and for every 1 ≤ s ≤ m.
These cycles can be decomposed into three chains, no matter which arc is chosen
to be first. We have the following cycle 6m3 times for every 0 ≤ i ≤ 4m2 − 1.
The number of arcs in a cycle is 48m2, and no vertex is repeated until the cycle
is closed. The cycle consists of 6m2 phases of eight arcs. For 0 ≤ q ≤ 6m2−1, we
have the eight arcs (i+4qm2, i+2+4qm2), (i+2+4qm2, i+2+(4q+2)m2), (i+
2+(4q +2)m2, i+4+(4q +2)m2), (i+4+(4q +2)m2, i+(4q +2)m2), (i+(4q +
2)m2, i + 3 + (4q + 2)m2), (i + 3 + (4q + 2)m2, i + 3 + (4q + 4)m2), (i + 3 + (4q +
4)m2, i + 6 + (4q + 4)m2), (i + 6 + (4q + 4)m2, i + (4q + 4)m2). Since m > 1 is
an integer, 2m2 ≥ 8, and so vertices with different residues (indices mod 2m2)
cannot coincide. Vertices with the same residue are distinct due to the different
coefficients of m2. The decomposition of each cycle creates 24m2 chains. We get
that opt ≤ n(36m3 +18m3 +18m3 +36m2(m− 1)+54m2) = n(108m3 +18m2).
APX = (12nm3) · 8 + 48m2 · 6m3 · 4m2 · 1.5 = nm3(96 + 72) = 168nm3. This
gives a ratio of 168m/(108m + 18) which tends to 14/9 for large m.

Lemma 2. Algorithm MCC-TS has approximation ratio of at most 14/9.

Proof. For every arc e, define a weight w(e) in the following way. w(e) = 1/3 +
2�(e)/(3n). We show the following properties.
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1. The total sum of weights of arcs is at most (5/9)opt.
2. The number of new chains caused by decomposition is at most the total sum
of weights.

The total cost for original chains and valid cycles constructed by MCC is
bounded by opt, so the result of proving the properties would be APX ≤
14opt/9.

We start with proving property 1. Consider a cycle C in OPT which con-
sists of k arcs. The total cost paid by OPT for C is k. The total weight of
the arcs of C is exactly k/3 + 2/3, and k/3 + 2/3 ≤ 5k/9 for k ≥ 3. Con-
sider a chain created by OPT which consists of k arcs. The total cost paid
by OPT for this chain is k + 1. The total weight of the arcs of this chain
is at most k/3 + 2/3, and (k/3 + 2/3) ≤ 5(k + 1)/9 for k ≥ 1. Next, we
prove property 2. Consider a (not necessarily valid) cycle of 2k + 1 arcs con-
structed by MCC which is of length sn for some integer s. Every such cycle
can be split into at most 2s− 1 chains in the following way. Let i be the start-
ing vertex of an arc of the cycle, then i would be the first end-point of the
first chain and the last end-point of the last chain (it can be the case where
those two chains are combined into one). The distance to go from the first
end-point to the last is sn. The length of two consecutive chains along the cy-
cle is at least n + 1 (otherwise, they can be merged). If there are 2s chains,
this means that the distance between the first and the last is more than sn,
and therefore there are at most 2s − 1 chains. On the other hand any pair
of successive arcs can be combined in a chain due to the construction of the
MCC graph, so k + 1 chains are always possible. We get that the number of
new chains is at most min(k + 1, 2s − 1). The weight for these 2k + 1 arcs is
(2k + 1)/3 + 2s/3 = (2k + 2)/3 + (2s − 1)/3 ≥ (2/3 + 1/3) min(k + 1, 2s − 1).
Therefore, the weight of the cycle is at least the amount of additional cost caused
by the decomposition.

Consider a cycle of 2k arcs which is of length sn for an integer s. We can get
that the number of new chains is at most min(k, 2s − 1). The weight for these
2k arcs is 2k/3 + 2s/3 > 2k/3 + (2s− 1)/3 ≥ (2/3 + 1/3) min(k, 2s− 1).

Consider a chain of 2k or 2k+1 arcs with length in the interval [sn, (s+1)n).
Note that the original connected component built by MCC is already a chain
and not a cycle. There are at most min(k, 2s) new chains. The weight of the
chain is at least 2k/3 + 2s/3 ≥ min(k, 2s).

Summarizing we proved the following theorem.

Theorem 8. Algorithm MCC-TS has approximation ratio of exactly 14/9.

7 Conclusion

We introduced an approximation algorithm COMB for the problem of minimiz-
ing the number of SONET ADMs. COMB is a combination of two algorithms,
one of them was introduced in this paper and the other was previously studied.
Algorithm COMB is the current best approximation algorithm for this problem.
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Table 2. Summary of results

Heuristic Lower bound Lower bound Upper bound Upper bound
on the on the on the on the

approximation approximation approximation approximation
ratio in [1] ratio (this paper) ratio (this paper) ratio in [1]

COMB − 4/3 10/7 −
PIM 4/3 3/2 − 3/2
PCM 3/2 5/3 − 5/3

MCC-TS 3/2 14/9 14/9 8/5
NMCC-TS 3/2 8/5 − 8/5
PET-TS 3/2 5/3 − 7/4

IM 3/2 8/5 < 5/3 5/3
PPIM 3/2 14/9 < 5/3 5/3

We showed that it is a 10/7 approximation algorithm, and we provided a lower
bound on its worst-case performance of 4/3. Closing this gap, and finding a
better approximation algorithm is left for future research. We also raise the fol-
lowing question: Is there a good approximation algorithm whose preprocessing
step consists of cycle removal solely (without removal of chains)?
A summary of the results in the paper can be found in Table 2.
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